

Object Detection Introduction

Presentation by Jamyoung Koo 2019.03.20

Contents

- Object Detection using CNN
 - 1. Basics
 - 2. Recent Approach
 - 3. In Remote Sensing

01 Basics

Terms: Object Detection

CAT, DOG, DUCK

The task of assigning a label and a bounding box to all objects in the image

Terms: IoU(Intersection over Union)

Terms: NMS(Non-Maximum Suppression)

Modified NMS. Boxes are ranked by their foreground ROI score

R-CNN: Architecture

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic seg mentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2014.

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

R-CNN: Problem

Slow at test-time

Need to run full forward pass of CNN for each region proposal

R-CNN: Problem

SVMs and regressor

CNN features not updated in response to SVMs and regressors

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

aeroplane? no.
:
person? yes.
:
tvmonitor? no.
4. Classify
regions

Fast R-CNN: Architecture

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.

Fast R-CNN: Architecture

Solution: SVMs and regressor

Train it all at together End-to-End by change SVMs to FC layer

Fast R-CNN: Architecture

Solution: Slow at test-time

Share computation of convolutional layers by RoI pooling layer

Fast R-CNN: Rol pooling layer

Fast R-CNN: Rol pooling layer

<Example in Image for visuality>

Fast R-CNN: Problem

Selective Search

• Selective Search is very slow and is not trainable

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN: Architecture

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." *Advances in neural information processing systems*. 2015.

Faster R-CNN: Architecture

<Example in Image for visuality>

SSD: Single Shot multibox Detector

Liu, Wei, et al. "Ssd: Single shot multibox detector." *European conference on computer vi sion*. Springer, Cham, 2016.

FPN: Feature Pyramid Network

Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

02 Recent Approach

SIA

CVPR'18: 28 papers

- Relation Networks for Object Detection
- Finding Tiny Faces in the Wild With Generative Adversarial Network

An Analysis of Scale Invariance in Object Detection - SNIP

- MegDet: A Large Mini-Batch Object Detector
- Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation
- Single-Shot Object Detection with Enriched Semantics
- R-FCN-3000 at 30fps: Decoupling Detection and Classification
- Multi-Scale Location-Aware Kernel Representation for Object Detection
- Geometry-Aware Scene Text Detection With Instance Transformation Network
- Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks
- Pseudo Mask Augmented Object Detection
- Feature Selective Networks for Object Detection
- Single-Shot Refinement Neural Network for Object Detection
- Learning Globally Optimized Object Detector via Policy Gradient
- Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships
- ClusterNet: Detecting Small Objects in Large Scenes by Exploiting Spatio-Temporal Information
- Objects as context for detecting their semantic parts
- Dynamic Zoom-in Network for Fast Object Detection in Large Images

Cascade R-CNN: Delving into High Quality Object Detection

- DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
- Repulsion Loss: Detecting Pedestrians in a Crowd
- · ...

ECCV'18: 19 papers

Acquisition of Localization Confidence for Accurate Object Detection

- Receptive Field Block Net for Accurate and Fast Object Detection
- Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
- Deep Feature Pyramid Reconfiguration for Object Detection
- SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network CornerNet: Detecting Objects as Paired Keypoints
- Zero-Shot Object Detection
- Learning Region Features for Object Detection
- Graininess-Aware Deep Feature Learning for Pedestrian Detection
- DetNet: Design Backbone for Object Detection
- PyramidBox: A Context-assisted Single Shot Face Detector
- Quantization Mimic: Towards Very Tiny CNN for Object Detection
- Object Detection with an Aligned Spatial-Temporal Memory
- Localization Recall Precision (LRP): A New Performance Metric for Object Detection Context Refinement for Object Detection
- Context Refinement for Object Detection
- Bi-box Regression for Pedestrian Detection and Occlusion Estimation
- Deep Feature Pyramid Reconfiguration for Object Detection
- Parallel Feature Pyramid Network for Object Detection
- Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd
- Learning Region Features for Object Detection
- Where are the Blobs: Counting by Localization with Point Supervision(Counting)Geometry-Aware Scene Text Detection With Instance Transformation Network

SNIP

An Analysis of Scale Invariance in Object Detection – SNIP

Bharat Singh Larry S. Davis University of Maryland, College Park

{bharat, lsd}@cs.umd.edu

Problem Definition: Large scale variation

- Why is object detection so much harder than image classification?
 - → Large scale variation across object instances

SNIP

Figure 6. SNIP training and inference for IPN is shown. Invalid RoIs which fall outside the specified range at each scale are shown in purple. These are discarded during training and inference. Each batch during training consists of images sampled from a particular scale. Invalid GT boxes are used to invalidate anchors in RPN. Detections from each scale are rescaled and combined using NMS.

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

Zhaowei Cai UC San Diego

zwcai@ucsd.edu

Nuno Vasconcelos UC San Diego

nuno@ucsd.edu

Cascade R-CNN

Accuracy

Cascade R-CNN: Delving into High Quality Object Detection

Zhaowei Cai UC San Diego

zwcai@ucsd.edu

Nuno Vasconcelos UC San Diego

nuno@ucsd.edu

Cascade R-CNN: Quality

In this work, we define the *quality* of an hypothesis as its IoU with the ground truth, and the *quality of the detector* as the IoU threshold u used to train it. The goal is to investi-

(a) Detection of u = 0.5

(b) Detection of u = 0.7

High quality detector

Cascade R-CNN: Problem

Overfitting during training, due to exponentially vanishing positive samples

Cascade R-CNN: Main Idea

are trained sequentially, using the output of one stage to train the next. This is motivated by the observation that the output IoU of a regressor is almost invariably better than

the input IoU.

Cascade R-CNN: Architecture

(d) Cascade R-CNN

Figure 4. The IoU histogram of training samples. The distribution at 1st stage is the output of RPN. The red numbers are the positive percentage higher than the corresponding IoU threshold.

Acquisition of Localization Confidence for Accurate Object Detection

Borui Jiang^{*1,3}, Ruixuan Luo^{*1,3}, Jiayuan Mao^{*2,4}, Tete Xiao^{1,3}, and Yuning Jiang⁴

¹ School of Electronics Engineering and Computer Science, Peking University
² ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University
³ Megvii Inc. (Face++)
⁴ Toutiao AI Lab
{jbr, luoruixuan97, jasonhsiao97}@pku.edu.cn,
mjy14@mails.tsinghua.edu.cn, jiangyuning@bytedance.com

IoU-Net: Problem

Abstract. Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes properly localized bounding boxes degenerate during iterative regression or even suppressed during NMS. In the paper we propose IoU-Net learning to predict the IoU

Regression-based Bounding Box Refine (FPN)

IoU-Net: Main Idea

IoU-Net

(a) IoU vs. Classification Confidence

(b) IoU vs. Localization Confidence

IoU-Net

MetaAnchor: Learning to Detect Objects with Customized Anchors

Tong Yang*† Xiangyu Zhang* Zeming Li* Wenqiang Zhang† Jian Sun*

*Megvii Inc (Face++) † Fudan University {yangtong,zhangxiangyu,lizeming,sunjian}@megvii.com wqzhang@fudan.edu.cn

Meta-Anchor: Problem

Anchors are fixed

Meta-Anchor: Architecutre

03 In Remote Sensing

Oriented Objects

Bounding Box V.S. Rotated Bounding Box

RBox-CNN

RBox-CNN: Rotated Bounding Box based CNN for Ship Detection in Remote Sensing Image

Jamyoung Koo Satrec Initiative, Korea jmkoo@satreci.com Junghoon Seo Satrec Initiative, Korea sjh@satreci.com Seunghyun Jeon Satrec Initiative, Korea jsh@satreci.com

Jeongyeol Choe Satrec Initiative, Korea cjy@satreci.com Taegyun Jeon Satrec Initiative, Korea tgjeon@satreci.com

RBox-CNN

RBox-CNN

(a) HRSC2016

(b) ODAI

	Team Name 🍦	mAP 🏺
•	USTC-NELSLIP	0.705
•	jmkoo	0.622
0	HUST_MCLAB	0.598
•	NWPU_SAIP	0.578
•	changzhonghan	0.531
•	madebyrag	0.506
•	mfhan	0.42

<ICPR'18 ODAI Contest>

R²CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy

Xue Yang^{1,3}, Kun Fu^{1,2,3}, Hao Sun¹, Jirui Yang^{1,3}, Zhi Guo¹
Menglong Yan¹, Tengfei Zhang^{1,3}, Sun Xian¹

1,2</sup>Institute of Electronics, Chinese Academy of Sciences, Beijing (Suzhou), China.

3University of Chinese Academy of Sciences, Beijing, China.

yangxue16@mails.ucas.ac.cn

R2CNN++

Yang, Xue, et al. "R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy." *arXiv preprint arXiv:1811.07126* (2018).

IF-Net: Inception Fusion Network

MDANet: Multi-Dimensional Attention Network

Learning Rol Transformer

Learning RoI Transformer for Detecting Oriented Objects in Aerial Images

Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, Qikai Lu LIESMARS-CAPTAIN, Wuhan University, Wuhan, 430079, China {jian.ding, xuenan, longyang, guisong.xia, qikai_lu}@whu.edu.cn

December 4, 2018

CAD-Net

CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery

Gongjie Zhang, Shijian Lu and Wei Zhang

CAD-Net

Appendix: CVPR Workshop

News

- 2019-03-19: Release of evaluation code for DOTA-v1.5. New!
- 2019-03-19: Little revision of annotation. New!
- **2019-03-05**: A small problem of annotations is fixed and a new-version annotation has been released.
- **2019-03-04**: The challenge is open.
- 2019-03-04: The new dataset <u>DOTA-v1.5</u> is available online.

Important Dates

- Registration open: March 5, 2019
- Training/Validation dataset available: March 5, 2019
- The evaluation server of task 1-2 will be available: March 20, 2019
- Challenge submission deadline: April 15, 2019

Thank you

