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Convolution Neural Networks for  Google Brain Project on
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Gartner Hype Cycle for
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https://arxiv.org/pdf/1906.04493.pdf

Unsupervised Minimax:
Adversarial Curiosity,
Generative Adversarial Networks,
and Predictability Minimization

Jiirgen Schmidhuber
The Swiss Al Lab, IDSIA
USI & SUPSI, Manno-Lugano
Switzerland

Abstract

I review unsupervised or self-supervised neural networks playing minimax games
in game-theoretic settings. (i) Adversarial Curiosity (AC, 1990) is based on two
such networks. One network learns to probabilistically generate outputs, the other
learns to predict effects of the outputs. Each network minimizes the objective
function maximized by the other. (ii) Generative Adversarial Networks (GANs,
2010-2014) are an application of AC where the effect of an output is 1 if the output
is in a given set, and 0 otherwise. (iii) Predictability Minimization (PM, 1990s)
models data distributions through a neural encoder that maximizes the objective
function minimized by a neural predictor of the code components. We correct a
previously published claim that PM is not based on a minimax game.

1 Introduction

Computer science has a rich history of problem solving through computational procedures seeking
to minimize an objective function maximized by another procedure. For example, chess programs
date back to 1945 [92], and for many decades have successfully used a recursive minimax procedure
with continually shrinking look-ahead, e.g., [88]. Game theory of adversarial players originated
in 1944 [37]. In the field of machine learning, early adversarial settings include reinforcement
learners playing against themselves [50] (1959), or the evolution of parasites in predator-prey games,
e.g., [24, 76] (1990).

Since 1990, adversarial techniques of a quite different type have also been employed in the field of
unsupervised or self-supervised artificial neural networks (NNs) [51, 55] (Sec. 2). In such settings,
a single agent has two separate learning NNs. Without a teacher, and without external reward for
achieving user-defined goals, the first NN somehow generates outputs. The second NN learns to
predict consequences or properties of the generated outputs, minimizing its errors, typically by
gradient descent. However, the first NN maximizes the objective function minimized by the second
NN, effectively trying to generate data from which the second NN can still learn more. In what
follows, we will review such approaches, and relate them to each other.
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1712 Thomas Newcomen Steam Engine
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1769 James Watt Steam Engine
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“Heavier-than-air flying machines are impossible.”
William Thomson, Lord Kelvin English scientist, 1899
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NOW AND THE FUTURE
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A New Golden Age for Computer Architecture

Figure 8. Functional organization of Google Tensor Processing Unit (TPU v1).

() () 14 GiB/s 30 GiB/s
DDR3 Weight FIFO
[ Interfaces ] :> [ (Weight Fetcher) ]
ﬂ 30GiB/s
g | Matrix
@ ~Multiply Unit
14 GiB/s g'g 14 GiB/s -S (64K per cycle)
-
| <=\ '
T g L
— 165 GiB/s
[[IData Buffer
[JComputation :ﬁ
Sl &= e
Not to Scale —

Figure 9. Agile hardware development methodology.

Big Chip
Tape-Out

Tape-Out

https://dl.acm.org/citation.cfm?id=3282307

TPU v1 and v2

TPU V1 TPUv2
Launched in 2017
Inference and training

Launched in 2015

Inference only

Coral Dev Board, Edge TPU
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Edge TPU performance benchmark

Table 1. Time per inference, in milliseconds (ms)

Model architecture Desktop CPU! | Desktop CPU'! Embedded CPU 2 | Dev Board 3
+ USB Accelerator (USB 3.0) with Edge TPU
with Edge TPU

Deeplab V3 394 §2 1139 241

(513x513)

DenseNet* 380 20 1032 25

(224x224)

Inception v1 Q0 3.4 392 4.1

(224x224)

Inception v4 700 85 3157 102

(299x299)

Inception-ResNet V2 753 57 2852 69

(299x299)

MobileNet v1 53 2.4 164 2.4

(224x224)

MobileNet v2 51 2.6 122 2.6

(224x224)

MobileNet v1 SSD 109 6.5 353 11

(224x224)

https://coral.withgoogle.com/docs/edgetpu/benchmarks/




New Computer Architecture
GPUKXC} 1000l tHE “H2|AE) & 7

- OJA[Zt et o] & +E, 0iAl2{d 2] ‘o2 2] AEHE T2 EEf2] FHE

2019 83 5

CPUEL} Z|CH 12t b WHE £E2 ALt 7ts8 Hdled X2 FX| ‘H22| AEE Z2EEHI0| SFRILCY.

OjAjZt Chat 0] 2 B4 HTEIS Bo| AXZ O{AX|S ‘M2 AEE ALSSH B ZEE(O| EXE CPURLH
E|Ch 19¢ B S AE2 HARILS X2[3 4 s oM TXIS JHUHC

A7 M= Hlo|XMX|of| =2F ‘&EEXQI CtE ALtS 28 25| M7 758 memristor-CMOS A|AEI(A
fully integrated reprogrammable memristor—-CMOS system for efficient multiply—accumulate
operations) 22 72 15 (HX|A|ZH) HIRHFHCE.

https://www.nature.com/articles/s41928-019-0270-x
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Platform Architecture

Building an Al Chip Saved Google
From Building a Dozen New Data
Centers

Server racks loaded with TPUs 9] G006LE

34
https://www.wired.com/2017/04/building-ai-chip-saved-google-building-dozen-new-data-centers/




Platform Architecture

Open-sourcing
ReAgent, a modular,
end-to-end platform for

building reasoning
systems

October 16, 2019 Jason Gauci, Honglei Liu, Mohammad Ghavamzadeh, Ralfi Nahmias

Whether they’re designed to surface product recommendations or navigate busy highways,
reasoning systems for real-world decision-making require some of the most sophisticated policies in
machine learning. But despite advances in reinforcement learning (RL) and other reward-based
approaches, learning through trial and error is difficult in unpredictable environments, and
developing policies that can achieve complex objectives is often time- and resource-intensive. To
overcome challenges like this, we are introducing ReAgent, a full suite of tools designed to
streamline the process of building models that make and rely on decisions.

https://ai.facebook.com/blog/open-sourcing-reagent-a-platform-for-reasoning-systems/

HHAE A=

—

Open-sourcing mvfst-rl, a research
platform for managing network
congestion

October 14, 2019
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Platform Architecture

Scalable Deep Learning on Distributed Infrastructures: .
Challenges, Techniques and Tools

RUBEN MAYER, Technical University of Munich, Germany
HANS-ARNO JACOBSEN, Technical University of Munich, Germany

Deep Learning (DL) has had an immense success in the recent past, leading to state-of-the-art results in various
domains such as image recognition and natural language processing. One of the reasons for this success
is the increasing size of DL models and the proliferation of vast amounts of training data being available.
To keep on improving the performance of DL, increasing the scalability of DL systems is necessary. In this
survey, we perform a broad and thorough investigation on challenges, techniques and tools for scalable DL on
distributed infrastructures. This incorporates infrastructures for DL, methods for parallel DL training, multi-
tenant resource scheduling and the management of training and model data. Further, we analyze and compare
11 current open-source DL frameworks and tools and investigate which of the techniques are commonly
implemented in practice. Finally, we highlight future research trends in DL systems that deserve further
research.

CCS Concepts: « Computing methodologies — Neural networks; « Computer systems organization
—+ Parallel architectures; Distributed architectures;

Additional Key Words and Phrases: Deep Learning Systems

ACM Reference Format:

Ruben Mayer and Hans-Arno Jacobsen. 2019. Scalable Deep Learning on Distributed Infrastructures: Challenges,
Techniques and Tools. ACM Comput. Surv. 1, 1, Article 1 (September 2019), 35 pages. hitps://doLorg/0000001.
0000001

1 INTRODUCTION

Deep Learning (DL) has recently gained a lot of attention due to its superior performance in tasks
like speech recognition [65, 69], optical character recognition [20], and object detection [95]. The
application of DL poses a tremendous potential in numerous areas like medical image analysis
(e.g., breast cancer metastases detection) [107], machine translation [84], image restoration (e.g.,
automatically colorize grayscale images) [75)], image captioning [68] (i.e., creating a description of
an image), and as agents in reinforcement learning systems that map state-action pairs to expected
rewards [10]. In DL, a network of mathematical operators is trained with classified or unclassified
data sets until the weights of the model are ready to make correct predictions on previously unseen
data. Major companies and open source initiatives have developed powerful DL frameworks such
as TensorFlow [4] and MXNet [125] that automatically manage the execution of large DL models
developed by domain experts.

1903.11314v2 [cs.DC] 25 Sep 2019

arXiv

https://arxiv.org/pdf/1903.11314.pdf




The Master Algorithm - Pedro Domingos
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37



New Computational Algorithms

BLOG POST
e RESEARCH 12 OCT 2016

Differentiable neural
computers

In a recent study in Nature, we introduce a form of memory-augmented neural network

RULHOKS called a differentiable neural computer, and show that it can learn to use its memory to

answer questions about complex, structured data, including artificially generated stories,

Greg Wayne 2 i
Y family trees, and even a map of the London Underground. We also show that it can solve a

e block puzzle game using reinforcement learning.

Alexander Graves
Plato likened memory to a wax tablet on which an impression, imposed on it once, would
remain fixed. He expressed in metaphor the modern notion of plasticity — that our minds can

FURTHER READING ] ]
be shaped and reshaped by experience. But the wax of our memories does not just form

—

e e ] impressions, it also forms connections, from one memory to the next. Philosophers like John

i Lty Locke believed that memories connected if they were formed nearby in time and space.

Instead of wax, the most potent metaphor expressing this is Marcel Proust’s madeleine cake;

—

Deep Reinforcement Learning ] : & i
for Proust, one taste of the confection as an adult undammed a torrent of associations from

Aot his childhood. These episodic memories (event memories) are known to depend on the

Memory hippocampus in the human brain.

38
https://deepmind.com/blog/article/differentiable-neural-computers




New C

omputational Algorithms

a Controller

Output

C—

Input

a Random graph

Underground input:
(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(Te CtRd, L )
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

84 edges in total

https://www.nature.com/articles/nature20101

b Read and write heads

Write vector

Write key

Read key

Read mode
sf@F

Read mode
ECE

Noting
Hil Gate.

Prccadily
Gireus.

Gloucaster
‘Road e Stiamess

Victoria_ Park
south Westminster

Kensington -

Traversal

Shortest-path

Traversal question:
(BondSt, _, Central),

(, _, Circle), (_, _, Circle),
(., _, Circle), (_, _, Circle),
(. _, Jubilee), (_, _, Jubilee),

Shortest-path question:
(Moorgate, PiccadillyCircus, _)

Answer: Answer:
(BondsSt, NottingHillGate, Central) (Moorgate, Bank, Northern)
(NottingHillGate, GloucesterRd, Circle) (Bank, Holborn, Central)

: (Holborn, LeicesterSq, Piccadilly)
(Westminster, GreenPark, Jubilee) (LeicesterSq, PiccadillyCircus, Piccadilly)

(GreenPark, BondSt, Jubilee)

= =@ u . J
Erase vector
“Hm W ) Wit

d Memory usage
and temporal links

¢ Family tree

Mary Becky Tom

Bob

Simon Freya Maternal great uncle Natalie

Family tree input:
(Charlotte, Alan, Father)
(Simon, Steve, Father)
(Steve , Simon, Son1)
(Nina, Alison, Mother)
(Lindsey, Fergus, Son1)

(Bob, Jane, Mother)
(Natalie, Alice, Mother)
(Mary, lan, Father)
(Jane, Alice, Daughter1)
(Mat, Charlotte, Mother)

54 edges in total

Inference question:
(Freya, _, MaternalGreatUncle)

Answer:
(Freya, Fergus, MaternalGreatUncle)
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New Computational Algorithms

GNN (Graph Neural Network)

Weighted

Directed

Undirected

@-
G.

©0-9-0

mn..un.u.unu

5
[fcResee e
«w2vwoo0o0e0l
“Neooooo
aNescocoe
vNeoeooooo
L B-B-N- B B -
\«ceRNNRY

TR VvVawuwe

)
.
« e 000

fcemoooeoe)
~omwo0O00O0
- B -R- RN - N -
Ooo —h OSOwmooO06
- E-N-N-R-N-J
- L L
~coo00o0 00/

——
T8 UbdDwewe

b
DN~
Y

_....uOOCOOl..._ﬁ
0 all...Ol .W

0 p s DmoOOOBOS

e veoooooe

£
g
ll...lt.i“
2

40

https://www.slideshare.net/JungwonKim10/graph-neural-network-introduction




ML Flow

ml C pocs communmy cope S W
L7300 Latest News
S

An open source platform for the
machine learning lifecycle

https://mlflow.org/



Tensorflow Extended

L TensorFlow Extended: Putting it all together

’ TFX Config
Airflow Runtime Kubeflow Runtime Your own favorite orchestrator ...
Data Indestion TensorFlow TensorFlow Estimator or TensorFlow 5’;&2’:&% TensorFlow
ge Data Validation Transform Keras Mode! Model Analysis Serving
Qutcomes
e
StatisticsGen TensorFlow

Ll Hub
4 % Evaluator

. . Model ' TensorFlow Lite
—_— Validator

Example

Validator
—

TensorfFlow
IS

[: Metadata Store

https://www.tensorflow.org/tfx




Onyx Framework

https://onyxframework.org/

Docs API GitHub

Powerful framework for modern applications

Built on Crystal, Onyx Framework brings previously unseen combination of
speed and joy to the world of everyday development.

Beautiful

Crystal syntax is heavily inspired

by Ruby, making the process of
development a true joy while staying
full OOP.

Safe

Thanks to Crystal being compiled,
you can catch bugs early during
development, reducing the amount
of runtime errors.

Get started

Fast

Crystal is a compiled language on
top of LLVM, which makes it up
to x75 times faster than most of
Ruby applications on web.

«» Simple

Onyx Framework is designed to be
as newcomer-friendly as possible,
still leaving a space to grow with
your knowledge.

£1 Efficient

Crystal has minimal footprint on
CPU and RAM compared to
interpreted languages and is
compiled to binary executables.

gﬁ Modular

Onyx Framework consists of multiple
loosely-coupled components,
perfectly designed for common
application needs.
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Releasing PAWS and PAWS-X: Two New Datasets to Improve
Natural Language Understanding Models
Wednesday, October 2, 2019

Posted by Yuan Zhang, Research Scientist and Yinfei Yang, Software Engineer, Google Research

Word order and syntactic structure have a large impact on sentence meaning — even small
perturbations in word order can completely change interpretation. For example, consider the
following related sentences:

1. Flights from New York to Florida.
2. Flights to Florida from New York.
3. Flights from Florida to New York.

LM-based Word Scrambling
+ Human Judgment

Original Corpus

Flights from New York to Florida Flights from Florida to New York

Backtranslation 0>
Y - Flltering - Human Judgment

; Fllghts from NYC to Florida v Flights from Florida to NYC @
i Flights from New York to Florida ' | flight from Florida to New York ;
i 'y :
: New York departure flights : ! Looking for flights from Florida :
Recombination
PAWS Corpus
- o by
Flights from New York to Florida Flights from Florida to New York
Negative
Positive 1 >—< I Positive
| Flights from NYC to Florida i . Flights from Fiorida to NYC |
(oo ’

https://ai.googleblog.com/2019/10/releasing-paws-and-paws-x-two-new.html
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Feedly

| &> Today
[l Read Later

() Mute Filter

FEEDS
= Al
> A
> Robotics

> Uncategorized

Create New Feed

BOARDS

W

Save insightful articles to
boards for reference or
sharing

CREATE A BOARD

16

UPGRADE

Today

feedly

Q Search

The insights you need to keep ahead

Me
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Racking Up a Super Celebration: Tech Marks
Exascale Day
200+ The Official NVIDIA Blog / 3d

If you ever need an excuse to unleash your inner geek, try this — October 18 is
now National Exascale Day. It's not a mega-match for a new weight class of
outsized wrestlers. It's a celebration of a new generation of supercomputers

A new era of spatial computing brings fresh
challenges—and solutions—to VR
87 Microsoft Research / 12h

Virtual reality (VR) has continually pushed the boundaries of how we perceive,
from its early days of Ivan Sutherland’s Sword of Damocles to today. With the
technology emerging from its early stages of bulky equipment tethered to one

NVIDIA EGX Supercomputing Platform
Simplifies Al Deployments to the Edge with




Tech Digest Report

RL Weekly

RL Weekly is a weekly newsletter highlighting important progress in reinforcement learning in research or industry.

Subscribe to RL Weekly

Get the highlights of reinforcement learning in both research and industry every week.

SUBSCRIBE

RL Weekly 33: Action Grammar, the Squashing Exploration Problem, and
Task-relevant GAIL

‘ W reinforcement-learning H W ri-weekly ‘

rf
(t
—
§l
i3
\? !
L]
IEEEERE]

- [h:'l J i In this issue, we look at Action Grammar RL, a hierarchical RL framework that adds new macro-actions, improving

performance of DDQN and SAC in Atari environments. We then look at a new algorithm that borrows just the benefits of SAC's
bounded actions to TD3 to achieve better performance. Finally, we look at an improvement to GAIL on raw pixel observations
by focusing on task-relevant details.

51
https://www.endtoend.ai/rl-weekly/




Data! Data! Datal
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https://www.youtube.com/watch?v= 10csAY9cmo
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' Those who cannot remember the past
are condemned to repeat it.

George Santayana, 1905
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