Watch the video clip
“ A computationally efficient motion primitive for

Quadrocopter trajectory generation”

https://youtu.be/oMy5y-eQVeE
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Objectives of the optimal control :

* Minimization of the error, E(X(ty)) : | (r;—dp)?, (zo+-h) % (%)?| Cost @ terminal

« Minimization of energy;, ftth(x(t),u(t))dt :fttflu(t)ldt

- Minimization of energy & time, ftth(x(t),u(t))dt : fttf(l + blu(t)])dt

Integration of cost rate

during flight
T
minimize / L(x(t),u(t)) dt + E(x(T))
(), u(-) 0
subject to

Eq. of motion: X, = f(Xq,u)

Initial condition : X5 Xpg Xp,

Constraint : u<u

max

>
zq_h

min



Data-Driven Control with Machine Learning

Prof. Steve Brunton, Univ. of Washington

Challenges :
* Nonlinear
« Unknown Dynamics
« High Dimensional
What is Control ? :
« Optimization constrained by
dynamics
What is Machine Learning ?
« Powerful NL optimization tool

based on data

Controller

u= K(y) y

I1.

[. Data Driven Models : System Id.

[I. Determine Optimal Control Polity



Improving a Quadrotor Model

using Flight Data

Modeling Dynamic Systems for
Multi-Step Prediction with
Recurrent Neural Networks

Nima Mohajerin, Uni. Of Waterloo



Motivation

Predicting the behaviour of a dynamic system has always been a challenging

and important problem in engineering.

« Complex nonlinearities, e.g. :

_ aeromic = | vorte;(
flapping effects et

effect blade

« Simple changes to a quadrotor physical characteristics (payload
modification, changing actuators, etc.) may cause significant change in the
dynamical model that requires additional modeling efforts.



Motivation

Flight data can be used to improve the physics-based model in a grey-

box modeling scheme.

Grey-box
Physics- Data-
based €——— White-box Black-box driven
model model

We would like to obtain a model that can perform multi-step predictions of

the quadrotor behaviour by using motor inputs only



Data driven modeling —regression with RNN

* Recurrent Neural Networks (RNNSs) are not only universal
approximators but also have internal dynamics.
» considered strong candidate for accurate representation of

dynamical systems.

m inputs, s hidden and
n output neurons




Data driven modeling —regression with RNN

Looks like a state-space representation

x(k) =f(Ax(k — 1)+ Bu(k) + b,)

y(k) = g(Cx(k) + Du(k) + b,).

x(k—1)
Ncmylinrmr Linear y (k)
u( ;,:) hidden output  e————|-
) |ayer x (k) layer




Data driven modeling —regression with RNN

Learning Algorithms for RNNs

1. Real Time Recurrent Learning :

v network weights are continually updated as the network
receives input elements

v’ suitable when it is required to train the network while
continually running it

2. Back Propagation Through Time :

v’ gradient is calculated for a (finite) time horizon and any
gradient based method can be applied to update the network
weights.



Data driven modeling —regression with RNN

Learning Algorithms for RNNs : RTRL

—1 <l
-~ -
bt

yi(k) ei(k) = yi (k) — yi(k)



Data driven modeling —regression with RNN

Learning Algorithms for RNNs : RTRL

cost function can be either the instantaneous error or a total error over

a given period such as




Multi-Step Prediction for Dynamic Systems
Input sequence of length T starting at a time instance k, + 1, U(k, + 1; T)

U(ko+1,T) = {u(}:ﬂ +1) ulkg+2) ... u(ky+ T)]

system response to this input is an output sequence denoted by Y(k, + 1; T)

Y (ko +1,T) = [y[kg—i—l) y(ko+2) ... y(sz+T)]

Our Problem is :

Given an input sequence U(k, + 1; T), the multi-step prediction problem seeks
an accurate estimate of the system output, Y(ko+ 1; T) , over the same time
horizon, T

—

Y(ko+1.7T) = [5’(:’?0+1) y(ko+2) ... ?(kDJFT)]



Multi-Step Prediction for Dynamic Systems

z—1
x(k—1) |
1\'[_1‘1111110;11‘ Linear y(k) . o -
k=ko+1 u(k) | hidden G Cost function to be minimized :

—- layer x(k) layer

ko4 T

z—1
x(k—1) |
k=k +T Nonlinear Linear k
0 y (k)
u(k) hidden output | ————— |

—_— layer | X(H) | layer



Physics based modeling — Quadrotor Model

Quadrotor frames and variables




Physics based modeling — Quadrotor Model

Physics based model of a quadrotor:

Euler angles

Position in
inertial frame

Rotation matrices k

Inertia
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Hybrid Models for Multi-Step Prediction

some characteristics of the system might be too difficult or expensive
to accurately model, such as the vortex ring effect on a quadrotor
A grey-box modeling approach can speed up the modeling process

and increase the prediction accuracy of the model.



Hybrid Models for Multi-Step Prediction

hybrid model consists of two black-box modules and a white-box module
» black-box modules : Input Model (IM) and Output Model (OM)
» white-box module : Motion Model (MM).
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Hybrid Models for Multi-Step Prediction

IM module generates the torques and thrust

MM module updates the states of the quadrotor for one step using
Equations

OM module compensates for the prediction error introduced by the MM

module because of the unmodeled dynamics and noise
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Hybrid Models for Multi-Step Prediction

Parallel Configuration
OM module only account for the error from unmodeled dynamics and

noise of MM module
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Results

White-box model vs. hybrid-parallel model in a single-step prediction scenario
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Results

Multi-step case :

An improvement more than an order of magnitude is observed by using

the hybrid-parallel model
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