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MS KINECT

http://www.youtube.com/watch?v=p2qlHoxPioM

The KINECT body pose estimation is achieved by
randomised regression forest techniques.
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We learn pose estimation as a regression
problem, and Gaussian process as a cutting edge
regression method.

We see it through the case study (slide credits to):
Semi-supervised Multi-valued Regression,

Navaratnam, Fitzgibbon, Cipolla, ICCV07,

where practical challenges addressed are
1)multi-valued regression and 2)sparsity of data.
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Image 1 Pose 6
e.g. Urtasun, Fleet, Hertzmann, Fua; ICCV 2005.

A mapping function is learnt from the input image | to the pose vector 6, which

is taken as a continuous variable.
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Given an image (top left), e.g. a silhouette (top right) is obtained by background
subtraction techniques (http://en.wikipedia.org/wiki/Background subtraction).
The estimated 3d pose is shown at two camera angels (bottom left and right).
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We attempt to map 2D image space to 3D pose space.
There is inherent ambiguity in pose estimation (as an example in the above).
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Williams, Blake, Cipolla; CVPR 2006

Eye tracking can be tackled as a regression problem, where
the input is an image | and the output is a eye location.
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Feature vector z
e.g. Shape contexts on
silhouette, z € R4V

Typical image processing steps:

Given an image, a silhouette is segmented.

A shape descriptor is applied to the silhouette to yield a finite

dimensional vector. (Belongie and Malik, Matching with Shape Contexts, 2000)
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e.g. Joint angles @ € R*’

The output is a vector of m joint angles.
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1. Obtain training samples (z;, @ 1)...(zx, 0 n)
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2. Training: Fit function 8 = f(z).

Pose, 0 —

Image, z —
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3. Given new image, z"®V, compute """ = f(z"W).
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3. Given new image, z"®V, compute §"°" = f(z"eW).

Image, z —
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3. Or, more usefully, compute p(8"°"|zbeW).

Pose, 0 —

Image, z —
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Gaussian Process
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‘Review of Gaussian density estimation

p(x)

, (lecture 1,2)

i.i.d.
(independent
identical
distributed)

X = (il?l, :I?N)T

We want to find the Gaussian parameters from the given data.

The problem i1s to find the parameters by maximising the
posterior probability

p(u, 0?|x) =

p(xlu, 0*)p(y, %)
p(x)
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" Review of Gaussian density estimation

(lecture 1,2)
p(xlp, 0)p(u,0°)
p(X)

We do not have priors on the parameters and data, thus we
maximise the (log) likelthood function 1nstead.

N
p(x|p, 0%) = H N (x|, 0%).

=1

p(u, 0%|x) =

N :
N

. N _ e AL
In p(x|p, 07) = —= E (2, — 1) 3 Ino & In(2m).

2074 2
g n=1

Maximum Likelithood (ML) vs Maximum A Posterior (MAP)

solutions: [ - J P(X|Y)P(Y)
(X]Y) (e.g. Gaussian Process) 17
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(lecture 1,2)

We want to fit a polynomial curve to given data pairs (X,1).

y(x, W) = wo + wix + wox? + ... + wyx™ g wir! = wTx
=0
where w=[M{1]

The objective ftn to minimise is E(w Z{y (05 W) — " + %IW!2

r

where ||w||* = w!w = wi + wi... + vy,
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London G 3USS | an P rocesses

e Gaussian Processes: extends the role of kernels to proba-
bilistic discriminative models. We shall see how kernels arise in
a Bayesian setting.

e We consider linear regression example and derive the predic-

tive distribution by working in terms of distributions over func-
tions y(x, w).

y(x) = w' o(x)

Consider a prior distribution over w by an isotropic Gaussian
of the form |
p(w) = N(w|0,a'1)

where the hyperparameter « 1s the precision (inverse variance).

19
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The probability distribution over w thus induces
—> a probability distribution over functions y(x).

e From given a data set x, .... Xy, we want to know the joint
distribution of the function values y(xy).....y(Xy). We denote
the vector y that has elements y,, = y(x,). Then we have

Y= bOw
where ¢ is the matrix with elements ¢,,;. = o.(x,,).
Note y is a linear combination of Gaussian distributed vari-

ables given by the elements of w and hence is itself Gaussian. It
has i1ts mean and covariance as follows.

20
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Ely] = OE[w| =0 y~N(y|0,K)
covly| = E[ny] = PE[ww'|D! = %fth)T — K
where K is the Gram matrix that has
1 ;i

[(nm = k(XmXH? ) = EQ(X”)

Q ( Xim ) .

e The figure below shows samples of functions drawn from
Gaussian processes for the Gaussian kernel

k(z,z") = exp(—||z — 2'||*/20?)
(Ieft) and the exponential kernel (right) given by

k(z,2") = exp(—0|z — 2'|)

21
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y(X)
3 - - - 3

L2

22
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‘Gaussian Processes for Regression

e We consider the noise on the observed target values by
tn_. — UYn T €p
where v, = y(x,), and €, 1s a random noise variable.
We consider noise processes that have a Gaussian distribution,
SO that

p(tn‘y-n) =N (t??-‘yﬂﬁ .-5_1)

where ([ 1s a hypeparameter representing the precision of the
noise.

23
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e The noise is independent for each data point. The joint dis-
tribution of the target values t = (;.....tx)’ conditioned on
y = (y1....,yn)" is an isotropic Gaussian of the form

p(tly) = N(tly, 57'Iy)

From the Gaussian process, the marginal distribution p(y) is a
Gaussian whose mean i1s zero and covariance is a Gram matrix
Kie.

ply) = N(y|0,K).

e To find the marginal distribution p(t) for given input values,
we make use of the following (proof skipped).

24
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p(x) = N (x|p, A7)
ply|x) = N(y|Ax + b, L"),
the marginal distribution becomes

p(y) =N(y|Ap+b, L7t + AATTAT)

Thus, we have

p(t) = / (tly)p(y)dy = N(t|0,C)

where
C(Xn: X'm..) — ]{?(X?“ Xm) + ;5_15????1-

Their covariances simply add, as the two Gaussian sources of
randomness 1.e. y(x), € are independent.

L5
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gression 1s

6, s .
(% %) = B8P {—7| %, — Xm||‘2} + 65 + Q;gxgxm.

(1.00, 64.00, 0.00, 0.00)

Lad

Figure 1: Samples from a Gaussian process prior defined by the kernel function with (6q, 61, 65.63).
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t=y(x)+e€

=
-2

—] 0 T 1

Figure 2: The blue curve shows a sample function from Gaussian process prior over functions, and the red
points show the values of y,,. The greens are the values of #,, by adding Gaussian noise.
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e Our goal 1s to predict the target value 7 for a new input
X N1, glven a set of training data x, ....xy and ty = (¢4, ..., tN)T.

EE4-62 MLCV

This requires the evaluation of the predictive distribution p(t x|t y),
where we omit the data vectors for notational simplicity.

e The joint distribution is given by
p(tni1) = N(tn+1|0,Cn1)

where Cy. is an (N + 1) x (/N + 1) covariance matrix. We
partition the covariance matrix aSy . y v« 1

Cy k
CN+1 = ( k% ; )

where the vector k has elements k(x,,,xy.) forn =1,..., N,
and the scalar ¢ = k(xy,1,Xy41) + 571

28
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e We use the followings to get the conditional distribution

p(En41]t).
Given

< — |: Lq ] 1 (= { Ha ] : 57— |: Z(m. Zab ]
Tph o0 Zba be

colflops
Halp = Ha =+ Zabzbb (l b — Ub)

B —1
th;b — Z(m _ Zﬂ-bzbb Zbﬂ-

Therefore, we have p(ty,1|t) a Gaussian distribution with mean
and covariance given by

m(Xyi1) = kTCirlt

T i(xge)=e— K Cik .



e The mean of the predictive distribution can be written as a
function of xy .1 as

m X\+l E arzk X??*X\—}—l)

n=1

where a,, is the n-th component of C't.

30
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These are the key results of Gaussian process regression. An ex-
ample of Gaussian process regression is shown below.

31



Gaussian Process Matlab Toolbox

http://www.lce.hut.fi/research/mm/gpstuff/i

nstall.shtml
(try demo_regression _robust.m,
demo_regressionl.m)
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Learning Hyperparameters

e Ve Fal &
1alel «.“‘
'l IAVU )

e The predictions of a Gaussian process depends on the choice
of covariance i.e. kernel function. Techniques for learning the
hyperparameters are based on the evaluation of the likelihood
function p(t|f).

e The log likelihood function 1s given using the standard from

of a multivariate Gaussian distribution as

| | N
Inp(t|d) = ~5 In|Cxy| — 5tTCNlt == In(27).

e

e Maximisation of the log likelihood can be done using the
gradient-based optimisation. We can take the derivative w.r.t. 6
as

33



0 ol o I ldc\ 1 T 1dCN |
90, Inp(t|d) __ETY (C\ 0. ) Z Cy 0. Cy't

which 1s obtained by a%(A_l) = —A_I%A_l and %hl [A] =
Tr (A~'22) (proofs skipped).

e Because In p(t|f) is in general a nonconvex function, thus
having multiple maxima.

34
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Automatic Relevance Determination

e Consider a Gaussian process with a two-dimensional input
x = (11, 19), with a kernel function

2
| = |
k(x,x') = 6y exp {2 ; ni(X; — ;z:’;)l’}

e Samples from the prior over functions y(x) are shown for
two different settings of the precision parameters 7);. As a partic-
ular parameter 7); becomes small, the function becomes relatively
insensitive to the corresponding input variable ;.

35



36



e The target variable ¢ is generated by sampling 100 values
of x; from a Gaussian, evaluating the function sin(27x;), and
then adding Gaussian noise. Values of x» are given by copying
the values of x; and adding noise, and values of w3 are sampled
from an independent Gaussian distribution.

The marginal likelihood is opimised w.r.t. 7)1, 12, 173 by the gra-
dient algorithm. The figure shows that 2 1s a good predictor of
t, x9 1s @ more noisy predictor, and a3 1s irrelevant for predicting
3 10°

107 t
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Back to the pose estimation
problem



3. Or, more usefully, compute p(8"°"|zbeW).

Pose, 0 —

Image, z —
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e |t'll never work...
— f is multivalued

— 7 and { live in high dimensions
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Multivalued f:
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Multivalued f:

znew p ( 0 new | Znew) A
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Instead of this:
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We have this:

Image, z —
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We have this:

: T
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:;. %
= e
.
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Image, z —
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We have this:

Pose, 0 —

Image, z —
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Instead of fitting p(@|z), fit p(@,z),
e.g. with GMM, Parzen, or GPLVM.

Pose, 6 —

Image, z —
GMM : Gaussian Mixture Model

GPLVM : Gaussian Process Latent Variable Model
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Given new image z", conditional p(@|z"¢")

is computed from the joint. €— p(l2) = pp(fz’)z )

p(z)
= [ p(6,2)do

Pose, 6 —

Image, z —
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Given new image z"*V, conditional p(@|z"*")
is computed from the joint.

Pose, 8 —

Image, z —
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Given new image z", conditional p(@|z"¢")
is computed from the joint.

p(0™"|z0)

Pose, 6 —

ZHBW

—
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Image, z —




For a video sequence:

« Compute modes of
conditional at every frame

« Choose sequence of modes to
maximize product of
likelihood and temporal
smoothness using Viterbi

But...
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Instead of this:
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Pose, 0 —

Image, z —
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We have this:

Pose, 0 —

Image, z —
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Of which a not unreasonable density estimate is:

Pose, 0 —

Image, z —
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We have too little training data, 1.e. too few
labelled (z,0) pairs

Pose, 6 —

Image, z —

We can’t get more because labelling images is

expensive...
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But we can easily capture more unlabelled
images, 1.e. (z,*) pairs

Pose, 6 —

Image, z —
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And we can easily download more mocap data
without images, i.e. more (*,0) pairs

Pose, 0 —

Image, z —
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In fact, it’s as if we know the marginals
p(0)= [ p(z,0)dzand p(z)= | p(z 0)d 0

Pose, p(0) —

Image, p(z)
_>
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Which contradict the marginals of our earlier
guess:
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[ffwd ] Using the marginal samples gives this:
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Joint manifold model t: a continuous

latent variable
Joint density p(z, )= [ p(8|t)p(zlt)p(t)dt
Or, loosely, the “spine” of the joint density is a manifold

0(t)
(Z(t)) t’”c/‘/( ,I) ' t=1.0

plus noise.

p(z,0) = [ p(z,0|t)p(t)dt

t=-1.0

Imperial College 6
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Joint manifold model

Find latent variables t to maximize
the posterior of training data D= {(0;,2,)}7_,

p(t,.r|D)x p(Dlty )p(t;. 1)
=p(01.1,Z1 1|t )p(ti.L)
=p(@1.1t1.L)p(z LIt )p(t. L)
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Adding the marginal samples...

Maximize the posterior of

e joint training data D={(0,,z/)}_,
e marginal @ data M= {(87,%)}/_,

e marginal zdata N={(x,z))}/_,

pO. |t )p(z. 1|t 1)
p(aj.th?..L) x p(z) |t] ;)
p(tl..L: 1. L’ L)
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Optimizing using scaled CG gives:
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The estimate from 100 training pairs:
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T+t 242 0

Applied to real

)
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Other methods
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Pel

Mixture of experts,
15J

GMM, 15J

GMM, 8J

GMM, 8J, 104M
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Failure modes
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Failure modes

1 1 1 1 1 1 1
0.8 0.6 -0.4 02 a 02 04 0.6 038

Bad initialization
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Real-Time Human Pose Recognition in Parts
from Single Depth Images (J. Shotton et al, 2011)

* Key features
— Depth image as input
— Real-time by Random Forest, and Part-based

| =l IS‘
Imperial College . ' o -

depth body part 3D joint | 71
London spihimage =y hodyparts = SDIOMPIOROSEE  EE4.62 MLCV



Progressive Search Space Reduction for
Human Pose Estimation (Ferrari et al, 2008)

Imperial College -
London EE4-62 MLCV



