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Rocket Landing Simulation

Watch the video clip

“Deep Learning in Deep Space”

https://youtu.be/8sDldAK4O0E



An on-board real-time optimal control system

Goal is to make 



• The mathematical model of a system usually leads to a system of equations 

describing the nature of the interaction of the system. 

• These equations are commonly known as governing laws or model 

equations of the system. 

• The model equations can be : 

time independent  steady-state model equations 

time dependent  dynamic model equations 

In this course, we are mainly interested in dynamical systems. 

 Systems that evolve with time are known as dynamic systems.

Dynamic Systems 



Examples of Dynamic models – RLC Circuit 

• Linear Differential Equations

• Example RLC circuit (Ohm‘s and Kirchhoff‘s Laws) 

 𝑥 = 𝐴𝑥 + 𝐵𝑢

• Nonlinear Differential equations : general cases

 𝑥 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 , 𝑡)



In mathematical systems theory, simulation is done by solving the 

governing equations of the system for various input scenarios. 

 This requires algorithms corresponding to the type of 

systems model equation. 

 Numerical methods for the solution of systems of 

equations and differential equations.

Simulation ... 



• A system with degrees of freedom can be always 

manipulated to display certain useful behavior. 

• Manipulation  possibility to control 

• Control variables are usually systems degrees of freedom. 

We ask: 

What is the best control strategy that forces a system to 

display required characterstics, output, follow a trajectory, 

etc ? 

 Optimal Control 

 Methods of Numerical Optimization 

Optimization of Dynamic Systems 



Ex. : Optimal Control of Landing
𝑥1

𝑥1
𝑠, 𝑥2

𝑠
Model Equations: 



Objectives of the optimal control :

• Minimization of the error : 

• Minimization of energy    :   0
𝑡
𝑢 𝑡 𝑑𝑡

Ex. : Optimal Control of Landing

(𝑥1
𝑠−𝑥1(𝑡)), (𝑥2

𝑠−𝑥2(𝑡)) Cost @ terminal

Integration of cost rate 

during flight



Problem formulation : 

Cost function :

Model (state ) 

equations :

Initial states: 

Desired final states: 

How to solve the above optimal control problem in order to achieve

the desired goal ? That is, how to determine the optimal trajectories

𝑥1
∗(t), 𝑥2

∗(𝑡) that provide a minimum energy consumption  0
𝑡
𝑢 𝑡 𝑑𝑡 so

that the rocket can be halted at the desired position?



Optimization of Dynamic Systems 

Regard simplified optimal control problem:

Cost rate @ t



Euler Discretization



𝐽 𝑥, 𝑡𝑘 = 𝐽𝑘(𝑥)Cost @ t=𝑡𝑘

Cost @ t=0 𝐽0(𝑥) =  𝑘=0
𝑁−1ℎ𝐿 𝑥, 𝑢, 𝑡𝑘 + 𝐸(𝑢𝑁)

= ℎ𝐿 𝑥, 𝑢, 𝑡0 +  𝑘=1
𝑁−1ℎ𝐿 𝑥, 𝑢, 𝑡𝑘 + 𝐸(𝑢𝑁)

= ℎ𝐿 𝑥, 𝑢, 𝑡0 + 𝐽1(𝑥)

= ℎ𝐿 𝑥, 𝑢, 𝑡0 + ℎ𝐿 𝑥, 𝑢, 𝑡1 +⋯+ ℎ𝐿 𝑥, 𝑢, 𝑡𝑁−1 + 𝐽𝑁(𝑥)

𝐽1(𝑥) = ℎ𝐿 𝑥, 𝑢, 𝑡1 + 𝐽2(𝑥)

⋮

𝐽𝑁−1(𝑥) = ℎ𝐿 𝑥, 𝑢, 𝑡𝑁−1 + 𝐽𝑁(𝑥)

𝐽𝑁(𝑥) = 𝐸(𝑢𝑁) So given u(¢) we can solve inductively backwards in 
time for objective J(t, x, u(¢)), starting at t = tN

 Called dynamic programming (DP)

Dynamic Programming for Euler Scheme

Cost @ t=1

Cost @ t=N-1

Cost @ t=N



Dynamic Programming for Euler Scheme

Optimal control



Hamilton-Jacobi-Bellman (HJB) Equation



Optimal feedback control for state x at time t is obtained from

Hamilton-Jacobi-Bellman equationoptimal control policy

a set of extremely challenging partial differential equations



Impossible to implement an Onboard Real Time Controller

Continuous Time Optimal Control



1. Pre-compute many optimal trajectories

2. Train an artificial neural network to approximate the optimal behaviour

3. Use the network to drive the spacecraft

Proposed Approach 

Learning the optimal control policy using deep networks



Landing models



Training data generation

• The training data is generated using the Hermite-Simpson transcription and a 

non-linear programming (NLP) solver

• The initial state of each trajectory is randomly selected from a training area

• 150,000 trajectories are generated for each one of the problems

(9,000,000 - 15,000,000 data points)



Approximate state-action with a DNN



Approximate state-action with a DNN



Approximate state-action with a DNN



How good is it ?

Very accurate results

+

The DNNs can be used as

an on-board reactive

system (32.000x faster

than optimization

methods used to

generate the data)



Generalization ?

• Successful landings from states outside of the training initial conditions

• This suggest that an approximation to the solution of the HJB equations is 

learned





CNN for state estimation from camera

1. Train a neural network to guess the state from an on-board camera

2. Use it together with the previous DNNs to get fully automated visual 

landing



A simple setup is used: a 3D model (Blender) of a rocket landing on 

a sea platform (Falcon 9 inspired

CNN for state estimation from camera



CNN for state estimation from camera



CNN for state estimation from camera



CNN for state estimation from camera



Watch the video clip

https://youtu.be/8sDldAK4O0E



• Deep networks trained with large datasets successfully approximate 

the optimal control even for regions out of the training data

• DNNs can be used as an on-board reactive control system, while 

current methods fail to compute optimal trajectories in an efficient way

Conclusions


