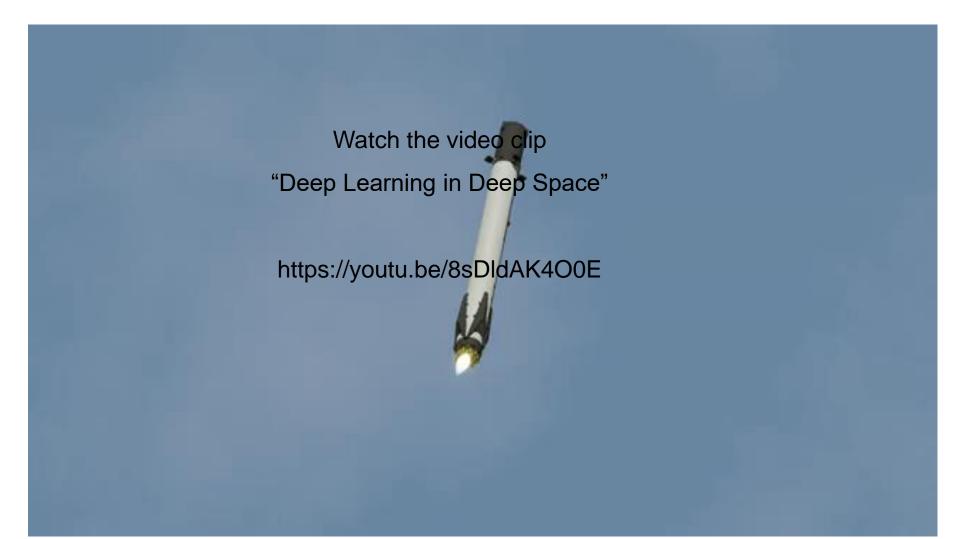
Optimal real-time landing using deep networks

Carlos Sánchez and Dario Izzo Advanced Concepts Team (ESA)

Daniel Hennes Robotics Innovation Center (DFKI)

Learning the optimal state-feedback using deep networks

Rocket Landing Simulation



Goal is to make

An on-board real-time optimal control system

Dynamic Systems

- The mathematical model of a system usually leads to a system of equations describing the nature of the interaction of the system.
- These equations are commonly known as governing laws or model equations of the system.
- The model equations can be :

time independent \rightarrow steady-state model equations

time dependent \rightarrow dynamic model equations

In this course, we are mainly interested in dynamical systems.

→ Systems that evolve with time are known as dynamic systems.

Examples of Dynamic models – RLC Circuit

Linear Differential Equations

$$\dot{x} = Ax + Bu$$

• Example RLC circuit (Ohm's and Kirchhoff's Laws)

$$\mathbf{v}_{(i)} = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{L} & 0 \end{bmatrix} \begin{pmatrix} i \\ v_{c} \end{pmatrix} + \begin{pmatrix} \frac{1}{L} \\ \frac{1}{L} \\ 0 \end{pmatrix} \mathbf{v}_{c}$$

$$\mathbf{x} = \begin{pmatrix} i \\ v_C \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} \bullet \\ i \\ \bullet \\ v_C \end{pmatrix}, \ A = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{L} & 0 \end{bmatrix}, \ B = \begin{pmatrix} 1/L \\ -\frac{1}{L} \\ 0 \end{pmatrix}, u = v$$

Nonlinear Differential equations : general cases

$$\dot{x} = f(x(t), u(t), t)$$

Simulation ...

In mathematical systems theory, simulation is done by solving the governing equations of the system for various input scenarios.

- This requires algorithms corresponding to the type of systems model equation.
- Numerical methods for the solution of systems of equations and differential equations.

Optimization of Dynamic Systems

- A system with degrees of freedom can be always manipulated to display certain useful behavior.
- Manipulation → possibility to control
- Control variables are usually systems degrees of freedom.

We ask:

What is the best control strategy that forces a system to display required characterstics, output, follow a trajectory, etc ?

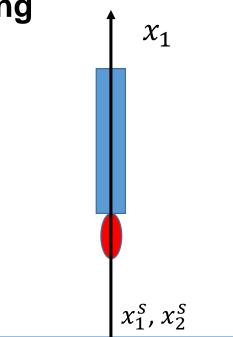
- ➔ Optimal Control
- ➔ Methods of Numerical Optimization

Ex. : Optimal Control of Landing

 $x_1(t)$: Position $x_2(t)$: Speed u(t): Propulsive Force m: Mass (m = 1 kg)

Model Equations:

 $\dot{x}_1(t) = x_2(t)$ $u(t) = m a(t) = m \dot{x}_2(t)$ $\dot{x}_1(t) = x_2(t)$ $\dot{x}_2(t) = \frac{1}{m}u(t)$



$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$

Ex. : Optimal Control of Landing

Objectives of the optimal control :

• Minimization of the error :
$$(x_1^s - x_1(t)), (x_2^s - x_2(t))$$
 Cost @ terminal

 $\left| \int_{0}^{t} u(t) dt \right|$

• Minimization of energy

Integration of cost rate during flight

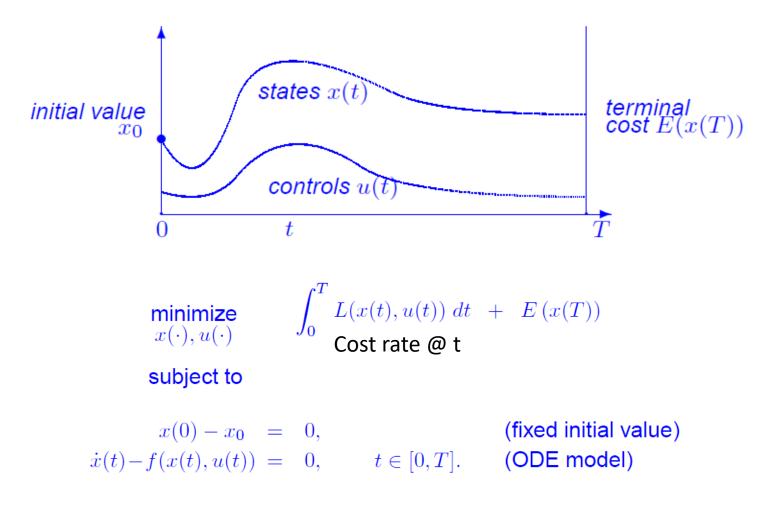
Problem formulation :

Cost function : $\begin{aligned}
&\min_{u(t)} \frac{1}{2} \int_{0}^{\infty} \left\{ \begin{bmatrix} x_{1}^{S} - x_{1}(t) \end{bmatrix}^{2} + 2 \begin{bmatrix} x_{2}^{S} - x_{2}(t) \end{bmatrix}^{2} + \begin{bmatrix} u(t) \end{bmatrix}^{2} \right\} dt \\
&\left[\begin{array}{c} \dot{x}_{1} \\ \dot{x}_{2} \end{array} \right] = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\
&x_{1}(0) = 2; \quad x_{2}(0) = 1 \\
&x_{1}^{S} = 0; \quad x_{2}^{S} = 0
\end{aligned}$

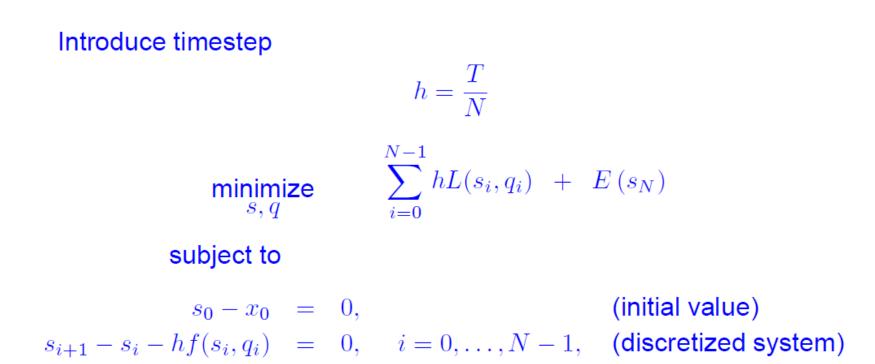
How to solve the above optimal control problem in order to achieve the desired goal ? That is, how to determine the optimal trajectories $x_1^*(t), x_2^*(t)$ that provide a minimum energy consumption $\int_0^t u(t)dt$ so that the rocket can be halted at the desired position?

Optimization of Dynamic Systems

Regard simplified optimal control problem:



Euler Discretization



Dynamic Programming for Euler Scheme

Cost @ $t=t_k$ $J(x, t_k) = J_k(x)$ $J_0(x) = \sum_{k=0}^{N-1} hL(x, u, t_k) + E(u_N)$ Cost @ t=0 $= hL(x, u, t_0) + \sum_{k=1}^{N-1} hL(x, u, t_k) + E(u_N)$ $= hL(x, u, t_0) + J_1(x)$ $= hL(x, u, t_0) + hL(x, u, t_1) + \dots + hL(x, u, t_{N-1}) + I_N(x)$ Cost @ t=1 $J_1(x) = hL(x, u, t_1) + J_2(x)$ Cost @ t=N-1 $I_{N-1}(x) = hL(x, u, t_{N-1}) + I_N(x)$

Cost @ t=N $J_N(x) = E(u_N)$ So given $\mathbf{u}(\phi)$ we can solve inductively backwards in time for objective $\mathbf{J}(\mathbf{t}, \mathbf{x}, \mathbf{u}(\phi))$, starting at $\mathbf{t} = \mathbf{t}_N$ \rightarrow Called dynamic programming (DP)

Dynamic Programming for Euler Scheme

Using DP for Euler Discretized OCP yields:

Optimal control $J_k(x) = \min_{u} hL(x, u) + J_{k+1}(x + hf(x, u))$

Replacing the index k by time points $t_k = kh$ we obtain

$$J(x, t_k) = \min_{u} hL(x, u) + J(x + hf(x, u), t_k + h).$$

Assuming differentiability of J(x,t) in (x,t) and Taylor expansion yields

$$J(x,t) = \min_{u} hL(x,u) + J(x,t) + h\nabla J(x,t)^{T} f(x,u) + h\frac{\partial J}{\partial t}(x,t) + O(h^{2})$$

Hamilton-Jacobi-Bellman (HJB) Equation

Bringing all terms independent of u to the left side and dividing by $h \rightarrow 0$ yields

$$-\frac{\partial J}{\partial t}(x,t) = \min_{u} L(x,u) + \nabla J(x,t)^{T} f(x,u)$$

This is the famous Hamilton-Jacobi-Bellman equation. We solve this partial differential equation (PDE) backwards for $t \in [0,T]$, starting at the end of the horizon with

$$J(x,T) = E(x).$$

NOTE: Optimal feedback control for state x at time t is obtained from

$$u^*(x,t) = \arg\min_u L(x,u) + \nabla J(x,t)^T f(x,u)$$

Continuous Time Optimal Control

Optimal feedback control for state x at time t is obtained from

$$u^*(x,t) = \arg\min_u L(x,u) + \nabla J(x,t)^T f(x,u)$$

optimal control policy

Hamilton-Jacobi-Bellman equation

a set of extremely challenging partial differential equations

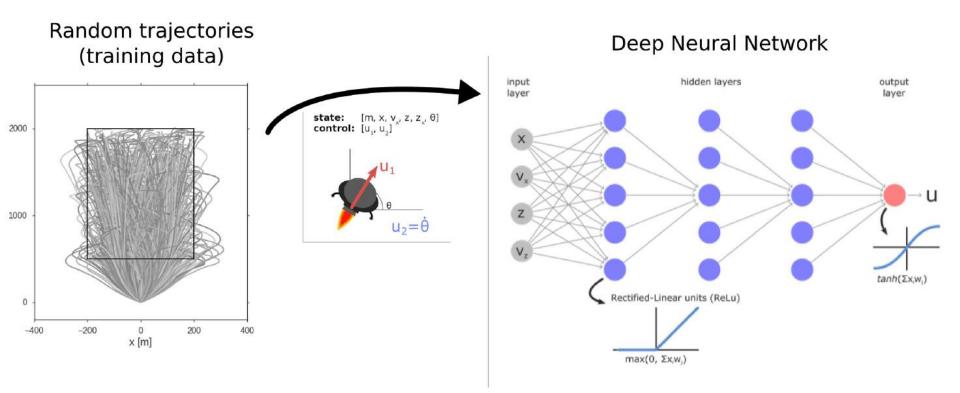
→

Impossible to implement an Onboard Real Time Controller

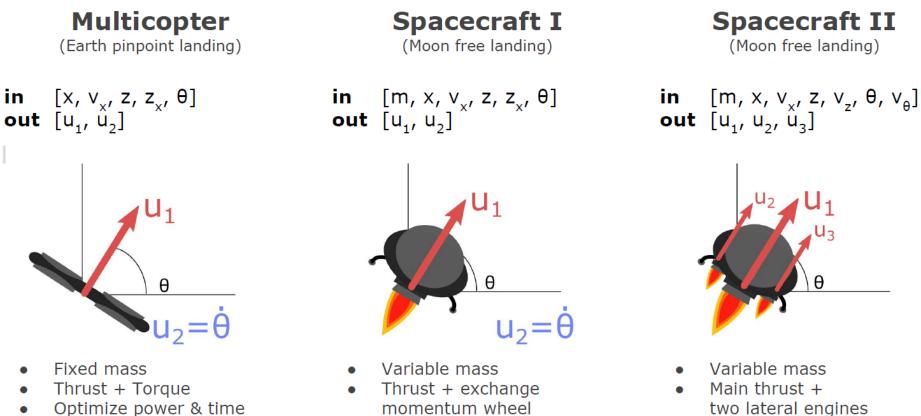
Proposed Approach

Learning the optimal control policy using deep networks

- 1. Pre-compute many optimal trajectories
- 2. Train an artificial neural network to approximate the optimal behaviour
- 3. Use the network to drive the spacecraft



Landing models



Optimize power & time

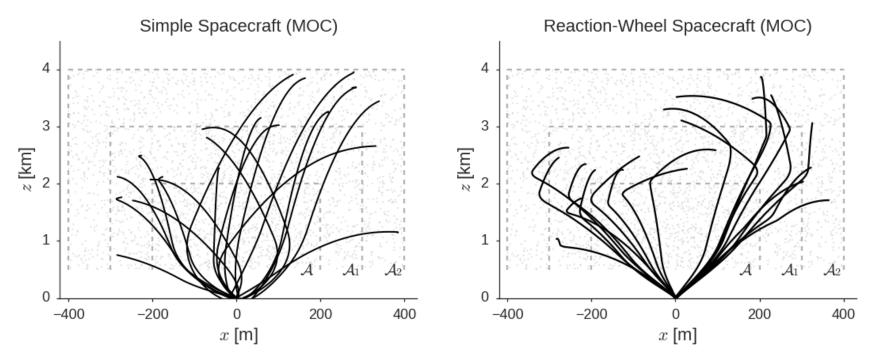
momentum wheel

Optimize mass

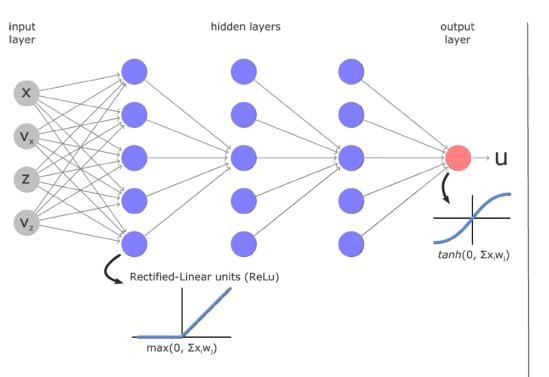
Optimize mass

Training data generation

- The training data is generated using the Hermite-Simpson transcription and a non-linear programming (NLP) solver
- The initial state of each trajectory is randomly selected from a training area
- 150,000 trajectories are generated for each one of the problems (9,000,000 - 15,000,000 data points)



Approximate state-action with a DNN

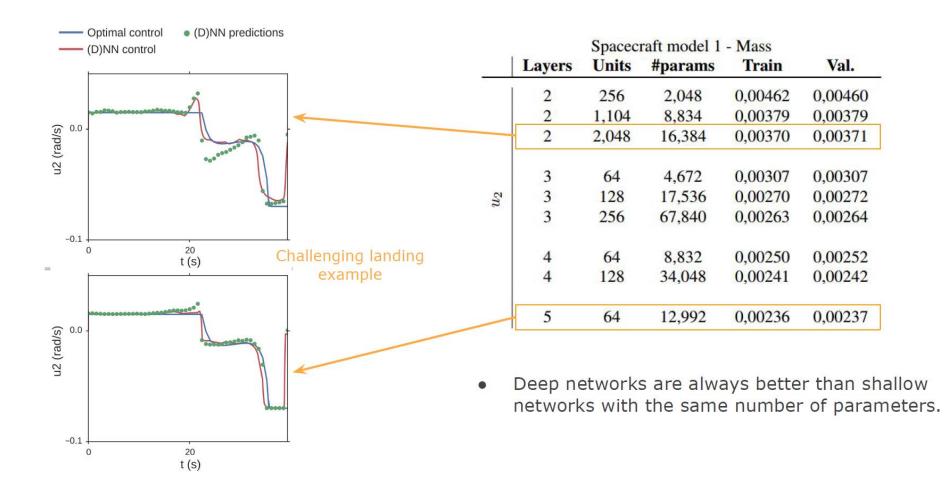


- Networks with 1 4 hidden layers
- Stochastic Gradient Descent (and momentum)

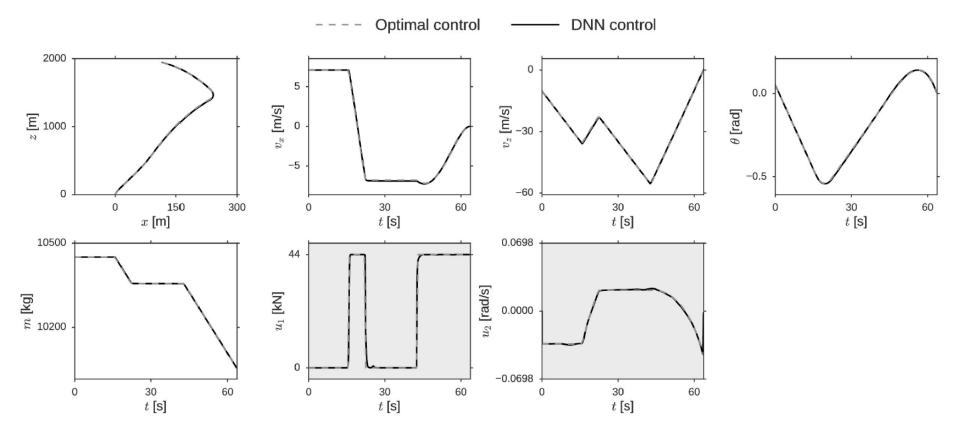
$$v_i \to v'_i = \mu v_i - \eta \frac{\partial C}{\partial w_i}$$
$$w_i \to w'_i = w_i + v'_i$$

- Minimize the squared loss error (C)
- We integrate over time the dynamics to get the full DNN-driven trajectory

Approximate state-action with a DNN



Approximate state-action with a DNN



How good is it ?

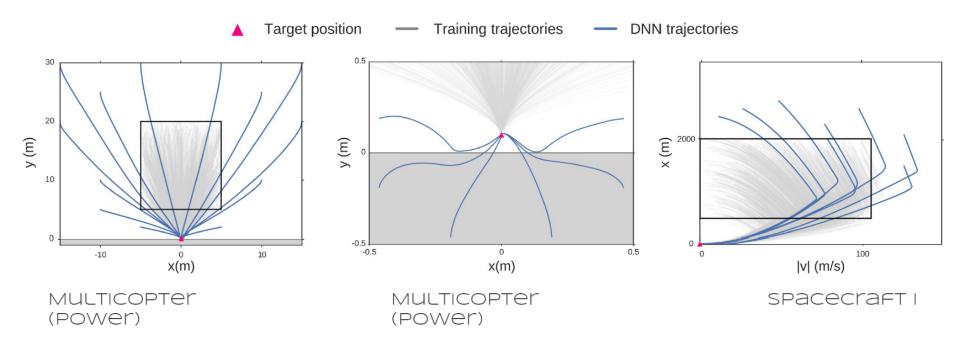
	Success rate		Distance to target			
		<i>r</i> [m]	$v \mathrm{[m/s]}$	θ [deg]	$\omega ~[\rm deg/s]$	
QUAD-QC	100.0%	0.014	0.027	0.36	-	1.82%
QUAD-TOC	100.0%	0.016	0.028	0.48	-	1.12%
SSC-QC	100.0%	0.40	0.052	-	-	0.24%
SSC-MOC	100.0%	2.47	0.12	-	-	0.45%
RWSC-QC	100.0%	0.29	0.044	0.20	-	0.40%
RWSC-MOC	98.3%	2.90	0.073	0.31	-	0.72%
TVR-QC	99.0%	1.10	0.066	0.06	0.0075	0.38%
TVR-MOC	95.0%	1.95	0.094	0.012	0.0054	0.33%

Table 6 Performance of the DNN-driven trajectories.

Very accurate results +

The DNNs can be used as an on-board reactive system (32.000x faster than optimization methods used to generate the data)

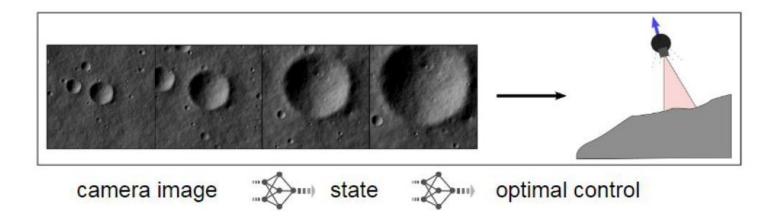
Generalization ?



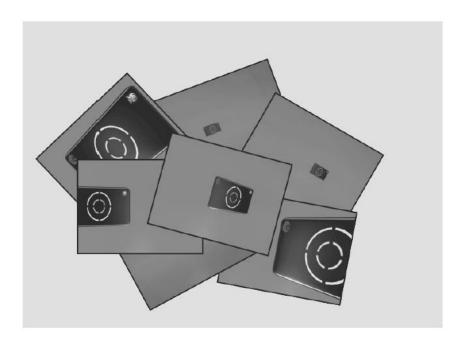
- Successful landings from states outside of the training initial conditions
- This suggest that an approximation to the solution of the HJB equations is learned

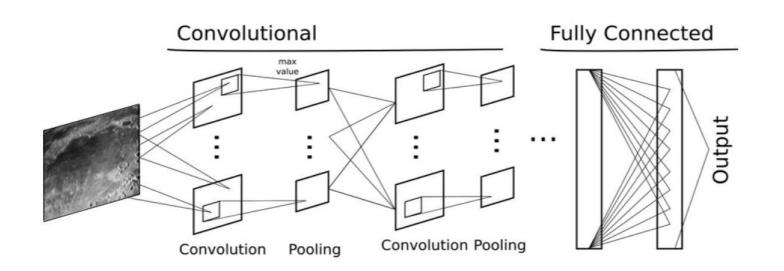
ADDING a CNN FOR THE PERCEPTION

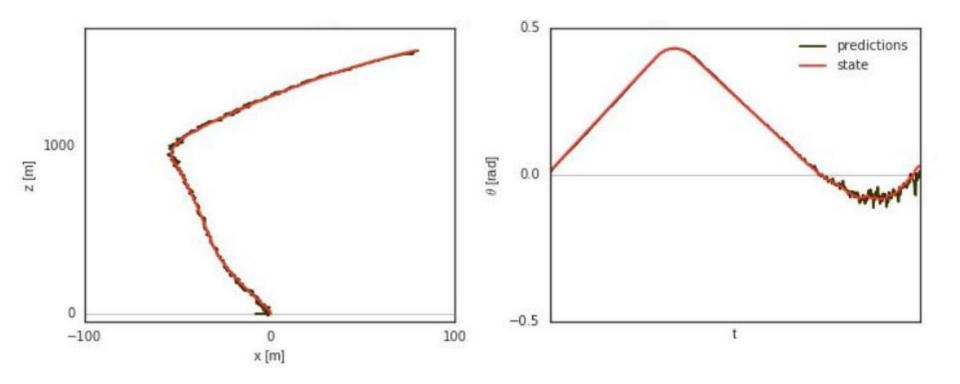
- 1. Train a neural network to guess the state from an on-board camera
- 2. Use it together with the previous DNNs to get fully automated visual landing

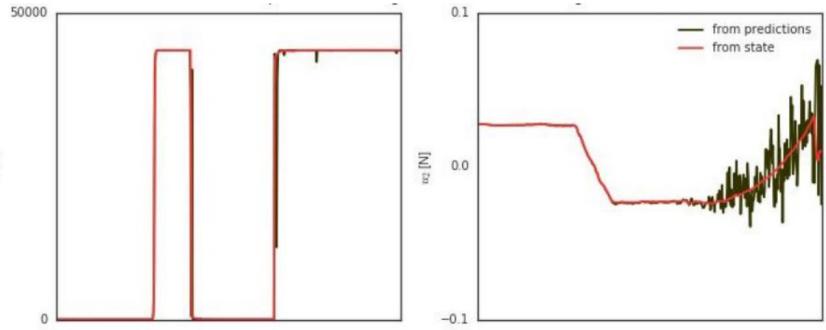


A simple setup is used: a 3D model (Blender) of a rocket landing on a sea platform (Falcon 9 inspired









[N] 12

Watch the video clip

https://youtu.be/8sDIdAK4O0E

Conclusions

- Deep networks trained with large datasets successfully approximate the optimal control even for regions out of the training data
- DNNs can be used as an **on-board reactive control system**, while current methods fail to compute optimal trajectories in an efficient way