Optimal real-time landing

using deep networks

Carlos Sdnchez and Dario 1zzo
Advanced Concepts Team (ESA)

Daniel Hennes
Robotics Innovation Center (DFKI)

Learning the optimal state-feedback using deep networks

Rocket Landing Simulation

Goal i1s to make

An on-board real-time optimal control system

Dynamic Systems

The mathematical model of a system usually leads to a system of equations
describing the nature of the interaction of the system.
These equations are commonly known as governing laws or model
equations of the system.
The model equations can be :

time independent =» steady-state model equations

time dependent = dynamic model equations
In this course, we are mainly interested in dynamical systems.

=>» Systems that evolve with time are known as dynamic systems.

Examples of Dynamic models — RLC Circuit

« Linear Differential Equations

x = Ax + Bu

« Example RLC circuit (Ohm's and Kirchhoff's Laws)
i

ek 111 [i }z {_ i ‘%}(J+(%}v
0@ T) e) [Yo 0 Je) Lo
N . (O -R/ _1 B
X:(IJ,Xz{.I },A—{ I L /L}B—(%},H—v
Ve Ve %" 0 _ 0

» Nonlinear Differential equations : general cases

x = f(x(6),u(t),t)

Simulation ...

In mathematical systems theory, simulation is done by solving the

governing equations of the system for various input scenarios.

= This requires algorithms corresponding to the type of
systems model equation.
= Numerical methods for the solution of systems of

equations and differential equations.

Optimization of Dynamic Systems

« A system with degrees of freedom can be always
manipulated to display certain useful behavior.

« Manipulation =» possibility to control
« Control variables are usually systems degrees of freedom.

We ask:
What is the best control strategy that forces a system to
display required characterstics, output, follow a trajectory,
etc ?

=» Optimal Control

=» Methods of Numerical Optimization

Ex. : Optimal Control of Landing

x,(7) : Position

x,(7) :Speed

u(t) : Propulsive Force
m : Mass (m =1kg)

Model Equations:

X%,(1) = x, (1)

u(ty=ma(tr) =mx,(r)
*'tl(r) = IE(E‘)

X, (1) =iu(r)
m

:

S S
X1, X5

Xy

o ofl2

X = Ax+ Bu

0
|

}f

Ex. : Optimal Control of Landing

Objectives of the optimal control :

« Minimization of the error :| (x5 —x,(t)), (x5—x,(t)) Cost @ terminal

* Minimization of energy : fotu(t)dt Integration of cost rate
during flight

Problem formulation :

Cost function : min = ;{[;\fls' NG) e e 1O }dr

x| [0 1][x] [0
Model (state) : = o oll« + | u
X, | X,

equations
x,(0)=2; x,(0)=1

S _n. S _

Initial states:

Desired final states:

How to solve the above optimal control problem in order to achieve

the desired goal ? That is, how to determine the optimal trajectories

x1 (1), x5(t) that provide a minimum energy consumption fotu(t)dt SO

that the rocket can be halted at the desired position?

Optimization of Dynamic Systems

Regard simplified optimal control problem:

A
states (1)~ |
initi — terminal
initial va{igg: cost E(x(T))
mhh--h-
0 l T
T
m|n|m|ze L(r(ﬂ H(ﬂ) dt + FE (I(Tﬂ
(), u() """ Costrate @ t
subject to
r(0)—x9 = 0, (fixed initial value)

F() = f(e(t),u(t)) = 0. te[0.7]. (ODE model)

Euler Discretization

Introduce timestep

T

h=—

Y
N-1

minimize > hL(si,qi) + E(sy)
S, 4 i=0
subject to
sg—axg = 0, (initial value)
sic1—8; —hf(s;.q;)) = 0, i=0,....N —1, (discretized system)

Dynamic Programming for Euler Scheme

Cost @ t=t;, J(x, tx) = Jr(x)

Cost @t=0 Jo(x)= Yr=o hL(x,u, ty) + E (uy)

= hL(x,u, ty) + XL hL(x, u, t) + E (uy)

=hL(x,u,ty) + J1(x)

=hL(x,u,ty) + hL(x,u,t;) + -+ hL(x,u, ty_1) + Jy(x)
Cost @ t=1 J1(x) = hL(x,u,ty) +J5(x)

Cost @ t=N-1 Jy_1(x) = hL(x,u, ty_1) +Jny(x)

Cost @ t=N Jy(x) =E(uy) So given U(¢) we can solve inductively backwards in
time for objective J(t, X, u(¢)), starting att =t
=» Called dynamic programming (DP)

Dynamic Programming for Euler Scheme

Using DP for Euler Discretized OCP yields:

Optimal control Jy () = minhL(z,u) + Jpr1(x + hf(z,u))

u

Replacing the index £ by time points 1, = kh we obtain

J(x,tp) =minhl(x,u)+ J(x+ hf(z,u),tp + h).

(i

Assuming differentiability of .J(x.7) in (xz.t) and Taylor expansion
yields

0.J

J(x,t) = min hL(z, u) + J(x, t) + hV (2,)" f(x,u) + h.ﬁ(;zr. t) 4+ O(h?)
U At

Hamilton-Jacobi-Bellman (HJB) Equation

Bringing all terms independent of « to the left side and dividing by
h — 0 yields

).J | |
S t) = min L,) + V(. 0)" (0
C u

This is the famous Hamilton-Jacobi-Bellman equation.
We solve this partial differential equation (PDE) backwards for t <
0,7, starting at the end of the horizon with

J(x, 1) = E(x).
NOTE: Optimal feedback control for state = at time ¢ is obtained from

u'(x,t) = argmin L(x, u) + V.J (.)" f(x,u)

Continuous Time Optimal Control

Optimal feedback control for state x at time t is obtained from

u*(x,t) = argmin L(x, u) + V.J(x, " fla,u)

optimal control policy Hamilton-Jacobi-Bellman equation

a set of extremely challenging partial differential equations
>

Impossible to implement an Onboard Real Time Controller

Proposed Approach

Learning the optimal control policy using deep networks

1. Pre-compute many optimal trajectories
2. Train an artificial neural network to approximate the optimal behaviour

3. Use the network to drive the spacecraft

Random trajectories Deep Neural Network

(training data)
i i A input hidden layers output
layer layer
state: [m,x, v,z,2,6] . . ‘
2000 control: [u, u,] ™
X
u @ O &
: v, o
- z ; @—u
. @ & @ =
1000 4 . A "o\
u2=0 @ @ & ’é
4 ‘_‘\ WV > Vz \
N\ | \ o . ‘ . tanh(Zxw,)
0| N (Rectified-Linear units (ReLu)
-400 -200 0 2(;0 400
x [m]
max(0, Ixw,)

Multicopter

(Earth pinpoint landing)

in [x,v,2z2z,60]
out [u, u,]

U,

8

Uzze

e Fixed mass
e Thrust + Torque
e Optimize power & time

Landing models

Spacecraft I

(Moon free landing)

in [m,Xx,v,2zz,6]
out [u, u,]

e Variable mass

e Thrust + exchange
momentum wheel

e Optimize mass

Spacecraft II

(Moon free landing)

in [m,X,v,zvVv,6, v]
out [u, u,, u]]

U,

U,

Us

6

Variable mass

Main thrust +

two lateral engines
e Optimize mass

Training data generation

The training data is generated using the Hermite-Simpson transcription and a
non-linear programming (NLP) solver

The initial state of each trajectory is randomly selected from a training area
150,000 trajectories are generated for each one of the problems

(9,000,000 - 15,000,000 data points)

Simple Spacecraft (MOC) Reaction-Wheel Spacecraft (MOC)

input
layer

Approximate state-action with a DNN

hidden layers output
layer

A
L Lo

Rectlﬁed Llnear units (RelLu)

__,f——""_

____‘_\—_
tanh(O Zxw,)

max(0, wa)

Networks with 1 - 4 hidden layers

Stochastic Gradient Descent (and
momentum)

oC

w; — Wi = w; + v,

!
’U?;—>’U1-)=}L‘U?;—

Minimize the squared loss error ()

We integrate over time the dynamics
to get the full DNN-driven trajectory

Approximate state-action with a DNN

—— Optimal control o (D)NN predictions
—— (D)NN control Spacecraft model 1 - Mass

| Layers Units #params Train Val.

2 256 2,048 0,00462 0,00460
2 1,104 8,834 0,00379 0,00379
2 2,048 16,384 0,00370 0,00371

o
[S)

u2 (rad/s)

3 64 4,672 0,00307 0,00307
g| 3 128 17,536 0,00270 0,00272
3 256 67,840 0,00263 0,00264

=01
’ {©® 4 64 8,832 0,00250 0,00252
: 4 128 34,048 0,00241 0,00242

3 64 12,992 0,00236 0,00237

0.0 4

u2 (rad/s)

e Deep networks are always better than shallow
networks with the same number of parameters.

20
t(s)

2000

.E. 1000 -

10500

Approximate state-action with a DNN

150
x [m]

300

10200 -

20
i [s]

60

v, [M/s]

uy [KN]

44 4

- = = - Optimal control

30

60

t[s]
20 60
t[s]

uy [rad/s]

-60

0.0698

0.0000

-0.0698

DNN control
0 ‘3:0 6‘0
t[s]
0 3IO GIO
t[s]

9 [rad]

0.0 4

30 60

t [s]

How good is it ?

Table 6 Performance of the DINN-driven trajectories.

QUAD-QC

QUAD-TOC

SSC-QC

SSC-MOC

RWSC-QC

RWSC-MOC

TVR-QC

TVR-MOC

Success rate

100.0%

100.0%

100.0%

100.0%

100.0%

98.3%

99.0%

95.0%

Distance to target

7 |m]
0.014

0.016

0.40

2.47

0.29

2.90

1.10

1.95

v [m/s|
0.027

0.028

0.052

0.12

0.044

0.073

0.066

0.094

0 [deg] w [deg/s|
0.36

0.48

0.20

0.06 0.0075

0.012 0.0054

Optimality

1.82%

1.12%

0.24%

0.45%

0.40%

0.72%

0.38%

0.33%

Very accurate results

4

The DNNs can be used as
an on-board reactive
system (32.000x faster
than optimization

methods used to

generate the data)

y (m)

Generalization ?

A Target position — Training trajectories — DNN trajectories

30

20

|
N

/ NN

y (m)
X (m)

. e) ‘/
10 0 10 -0 5 0 100
x(m) x(m) vl (m/s)
MULTICOPTEr MULTICOPTEr SPaceCrarFT |
(POWEN) (POWENN)

Successful landings from states outside of the training initial conditions

This suggest that an approximation to the solution of the HIB equations is
learned

.
.

ADDING a CRINFFEO I maaEaseRC e P 110N

CNN for state estimation from camera

1. Train a neural network to guess the state from an on-board camera
2. Use it together with the previous DNNs to get fully automated visual

landing

.

—

camera image ﬂ:@--- state @ optimal control

CNN for state estimation from camera

A simple setup is used: a 3D model (Blender) of a rocket landing on

a sea platform (Falcon 9 inspired

CNN for state estimation from camera

Convolutional Fully Connected

Output

Convolution Pooling Convolution Pooling /

z [m]

1000

CNN for state estimation from camera

-100

X [m]

100

05

—_— predictions
— state

w1 [N]

CNN for state estimation from camera

50000

uz [N]

01

0.0

- from predictions
- from state

Watch the video clip

https://youtu.be/8sDIdAK400E

Conclusions

Deep networks trained with large datasets successfully approximate
the optimal control even for regions out of the training data
DNNs can be used as an on-board reactive control system, while

current methods fail to compute optimal trajectories in an efficient way

