Automatic Gain Tuning
based on
Gaussian Process Global Optimization

(= Bayesian Optimization)
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A simple PD control example
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A simple PD control example

Procedure of Bayesian Optimization

3. The next parameters 6.« are chosen
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Acquisition function

Idea: build a probabilistic model of the function f

‘LOOP R

« choose new query point(s) to evaluate
decision criterion: acquisition function ()

L update model )
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Acquisition function and Entropy Search

maximize oz (xy)  t=1,---,7T
r:EX
Location I(a;:b) = H(a) — H(al|b)
| of global Observed = H(b) — H(bla)
Point to query optimum Data

a(z) = I1({z,y}; s | Dt)
= H(x.|D) — H(x.|D U (x, y))

Information gain, /7: Mutual information for an observed data
=» Reduction of uncertainty in the location x, by selecting points (x, y)
that are expected to cause the largest reduction in entropy of

distribution H(x,|D;)



Control design problem

propose the use of Entropy Search, a recent algorithm for global
Bayesian optimization, as the minimizer for the LQR tuning problem.
ES employs a Gaussian process (GP) as a non-parametric model

capturing the knowledge about the unknown cost function.

consider a system that follows a discrete-time nonlinear dynamic
model

Lhtl = f(ﬂ;'[,-. uj.. w/\-)

system states x«, control input us, and zero-mean process noise w:at
time instant k



Control design problem

common way to measure the performance of a control system is

through a quadratic cost function such as

1 K
J = lim —E E ;ltLT.Qm-wL'u,{Ruk

K—oo K
k=0

cost captures a trade-off between control performance (keeping X«
small) and control effort(keeping ux« small)

Nonlinear control design problem is intractable in general.

linear model is often sufficient for control design
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LQR tuning problem

Linear Quadratic Regulator (LQR)

Up = Fzx k

static gain matrix F can readily be computed by solving the
discrete-time infinite-horizon LQR problem for the nominal model

(A., B:) and the weights (Q, R).

F = lgrt Ay, By, O, 1T

goal of the automatic LQR tuning is to vary the parameters 6

such as to minimize the cost

J = J(8).



Optimization problem

argmin./(@) s.t. 8 €D

Consider the approximate one of quadratic cost function
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LQR TUNING WITH ENTROPY SEARCH

uncertainty over the objective function J is represented by a

probability measure p(J), typically a Gaussian process (GP)

prior knowledge about the cost function J as the GP

J(0) ~ GP (11(0),k(6,6.))

with mean function u(8)and covariance function k(6, 6,)

squared exponential (SE) covariance function

kse(8.0,) = o2 exp —é(e —0.)"S(6—0,)
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LQR TUNING WITH ENTROPY SEARCH

noisy evaluations of cost function can be modeled as

J=J(O) +¢

Conditioning the GP on the data {y, 8} then yields another GP with
posterior mean [ (0) and a posterior variance k(6, 6,).

=>» shape of the mean is adjusted to fit the data points, and the
uncertainty (standard deviation) is reduced around the evaluations
points.



LQR TUNING WITH ENTROPY SEARCH

ES is one out of several popular formulations of Bayesian Optimization

Aims to reduce the uncertainty in the location 0, by selecting points
that are expected to cause the largest reduction in entropy(=>» uncertainty)
of distribution, J(0)



Bayesian

Optimization

Bayesian Optimization and How to Scale It Up

Zi Wang
CS Colloquium, US



Blackbox Function Optimization

Goal:

T, = argmax f(x)
X CR4

(Calandra et al., 2015)



Bayesian Optimization

Idea: build a probabilistic model of the function f

‘LOOP B

« choose new query point(s) to evaluate
decision criterion: acquisition function a:(+)

L update model )

T, = argmax f(x)
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Gaussian Processes (GPs)

* probability distribution over functions

e any finite set of function values I1s a multi-variate Gaussian

Output f(x)




Gaussian Processes (GPs)

e probability distribution over functions
e any finite set of function values is a multi-variate Gaussian

e kernel function k(-.-); mean function pu(-)

f(ffl) N(ml) k(flfl,ml), "t k‘(irl’.'fn)
2 ' B I N z
f(zn) p(xy) k(zn,z1), -+, Kk(zn, xn)_

e function f ~ GP(u,k); observe noisy output at x-
Yr = f('lT) + €, € NN(Ow 02)



Gaussian Processes (GPs)

Samples from the prior Samples from the posterior

Given observations D; = {(z-,y-)}

t—1
=il s

mean and variance in closed form via conditional Gaussian

predict posterior

pe—1(x) = ki—y (2) T (Kio1 + 021) 1y
0v—1(2)? = k(z, ) — ki1 (2)! (K1 + 021 k1 (2)



Bayesian Optimization

Idea: build a probabilistic model of the function f

‘LOOP A

« choose new query point(s) to evaluate
decision criterion: acquisition function ou(+)

ot update model y

T, = argmin f(x)
X CR4
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r; = argmax oy ()
X CR4
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Entropy Search and Predictive Entropy Search

maximize ay(xry)  t=1,--- 7T
T €EX
Location [(a;b) = H(a) — H(alb)
. of global Observed = H(b) — H(bla)
Pomt to query optlmum Data
— —_— k = . —

Of( )_I({fl’ y}: T*|Dt)
= H(x.|D¢) — H(x.|D:U(x,y))

Information gain, 7: Mutual information for an observed data
=> Reduction of uncertainty in the location x, by selecting points (x, y)
that are expected to cause the largest reduction in entropy of

distribution H(x,|D;)



Entropy Search and Predictive Entropy Search

Pmin(X) = plx = argmin f(x)]

Probability of Improvement
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n : current best guess

®(7) = %[1 + erf<%>]

: Gaussian Cumulative Density Ft'n
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(c) 3 evaluations
Evolution of an example Gaussian process for three successive
function evaluations (orange dots)

Approximated probability distribution over the location of the
minimum p,.,i,(0) in green



