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1.1 RL Overview

* Labeled data
* Direct feedback
+ Predict outcomeffuture

Supervised

Unsupervised

* No labels
* No feedback
* “Find hidden structure”

Learning

Reinforcement

» Decision process
* Reward system
* Learn series of actions

@ “Pure” Reinforcement Leaming (cherry)
* The machine predicts a scalar
reward given once in a while.
* A few bits for some samples

@ Supervised Learning (icing)
» The machine predicts a category
or a few numbers for each input
* Predicting human-supphied data
* 10-+10,000 bits per sample

@ Unsupervised/Predictive Learning (cake)
* The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos

» Millions of bits per sample

@ (Yes, | know, this picture is slightly offensive to RL folks. But I'll make it up)

From Yann Lecun. (NIPS 2016)
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2, RL Tech, Tree

RL Algorithms Landscape

Policy Optimization Dynamic Programming
modified
p0|le |leral|0n
DFO / Evolution Policy Gradiants Policy lteration Value Iteration
/ Q-Learning
Actor-Critic
Methods

https://planspace.org/20170830-berkeley_deep_rl_bootcamp/

_deep_rl_ _
D gpaac (13




Agent

Value Optimization Policy Optimization DFP
| 1
DQN DDQN MMC PAL NAF Policy Gradient Actor Critic
NEC Bootstrapped N-Step Distributional v i ¥
DQN Q-Learning DQN DDPG Clipped PPO PPO

https://stevenschmatz.gitbooks.io/deep-reinforcement-learning/content/
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3. Model=based RL vs. Model=free

What is the difference between model-based and model-free reinforcement
learning?

To answer this question, lets revisit the components of an MDP, the most typical

decision making framework for RL.

An MDP is typically defined by a 4-tuple (S, A, R, T') where

S is the state/observation space of an environment

A is the set of actions the agent can choose between

R(s, a) is a function that returns the reward received for taking action a in
state s

T'(s'|s, a) is a transition probability function, specifying the probability that

the environment will transition to state s’ if the agent takes action @ in state s.

Our goal is to find a policy 7r that maximizes the expected future (discounted)

reward.

https://www.quora.com/What-is-the-difference-between-model-based-and-model-free-reinforcement-learning




So, if the agent does not know the transition function 7' nor the reward function

R, preventing it from planning a solution out, how can it find a good policy?

Well, it turns out there are lots of ways!

One approach that might immediately strike you, after framing the problem like

this, is for the agent to learn a model of how the environment works from its

observations and then plan a solution using that model. That is, if the agent is

currently in state s1, takes action a1, and then observes the environment
transition to state s, with reward 7, that information can be used to improve

its estimate of T'(s2|s1,a1) and R(s1, aq), which can be performed using

supervised learning approaches. Once the agent has adequately modelled the

environment, it can use a planning algorithm with its learned model to find a

policy. RL solutions that follow this framework are model-based RL algorithms.

https://www.quora.com/What-is-the-difference-between-model-based-and-model-free-reinforcement-learning
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As it turns out though, we don’t have to learn a model of the environment to find

a good policy. One of the most classic examples is Q-learning, which directly

estimates the optimal Q-values of each action in each state (roughly, the utility
of each action in each state), from which a policy may be derived by choosing

the action with the highest Q-value in the current state. Actor-critic and policy

search methods directly search over policy space to find policies that result in

better reward from the environment. Because these approaches do not learn a

model of the environment they are called model-free algorithms.

So if you want a way to check if an RL algorithm is model-based or model-free,

ask yourself this question: after learning, can the agent make predictions about

what the next state and reward will be before it takes each action? If it can, then

it’s a model-based RL algorithm. if it cannot, it’s a model-free algorithm.

This same idea may also apply to decision-making processes other than MDPs.

https://www.quora.com/What-is-the-difference-between-model-based-and-model-free-reinforcement-learning




3. Model-based Rl vs. Model-free RL

[1 Model-based algorithms <
S S,
T R
a r

[1 Model-free (or Value-based) algorithms

Policy searchjalgorithms *

Littman, MLSS 2009




Model=b _)Leajnmgj

(1 On experience (S¢, G¢, T't, Sta1):
* R(st,at) < R(s, a,t)@frt — R(st,a4))
© T'(st,at, st41) < T'(8t, a1, Se41) + (1 —T'(s¢, at, st+1))
o T'(s¢,a4,8") < T(s¢,a:,8") + (0 —T(s¢,at,8")) Vs # sp1q

+ Qo) “B)s. ) + 7 ST (s,0,9) maxy Q(s', )

W54k 22 §'2 BEANE Lhe ol cEYEL WL
[s,al]=[lz000 4 5] =[5 ?14-04“2 1 1k3]

le s‘=[I.z.ooﬁx]wkerexwmleﬂrfﬁé?ﬂ_m}
e (s, a) visited infinitely oft o S ok 5§ 4R, At 3

S, visited InTinitely orten z,ba’rsf[lzf)fJQee] '4‘1X4"a%-
« > a4 =00, Y, 07 < oo o 0! 3105 55 Bk ol 3.

Te 22 5Tl wiiuad Tof T oatmp ohE Sakab vinl 2k

L1 Then:
e Q(s,a) > Q*(s,a) [Littman 1996]

Littman, MLSS 2009
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Model-free (Value-based) : Q:learning

On experience(Sy, G, T't, Sta1) :

* Q(st,ar) < Q(st,ay) + a(ry + ymaxy Q(sir1,a’) — Q(s¢, ay))

|f:

e Y(s,a)visited infinitely often
© >, =00, Y, ap <00

Then:

e Q(s,a) — Q*(s,a) [Watkins & Dayan 1992]

Littman, MLSS 2009

(8)
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Model-Based Reinforcement Learni

— . —t

e Model = simulator = dynamics = T(s,a,s")
- may or may not include the reward function

e Model-free RL uses data from the environment only

e Model-based RL uses data from a model (which is given or estimated)
+ to use less data from the environment
+ to look ahead and plan
+ to explore
+ to guarantee safety

+ to generalize to different goals

NIPS2017, Tutorial

D gt \23)
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e Despite deep RL's recent success, it’s still difficult to see its real-world
applications

- Requiring a huge amount of interactions (1M~1000M®)
- No safety guarantees

- Difficult to transfer to other tasks

e MBRL can be a solution for these problems

NIPS2017, Tutorial
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Advantages:

m Can efficiently learn model by[supervised Tearning methods |
m Can[reason]about model uncertainty

Disadvantages:

m First learn a model, then construct a value function

—ltwo sources of approximation error

David silver, lecture note

N
1/




“What is a Model?

m A model M is a representation of an MDP (S. A.P.R),
parametrized by

m We will assume state space & and action space A are known

m So a model M zl(’F’,,.Rn)Irepresents state transitions
P, ~ P and rewards R, = R

Sz:—|—1 s Pn(St—;l | 5t-At)
Rt+1 — 7?'n(Rt—l—l | StaAt)

m [ypically assume[ conditional independence|between state
transitions and rewards

P[St—I-l-Rt+1 ‘ 5t~At] . IP)[5t+1 ‘ St-At]HD [Rt+1 | St-At]

David silver, lecture note

N
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Model Learning

—————

m Goal: estimate model M,, from experience {51. A1. R2..... 57}

m lhisis a|supervised learning problem |

51.A1 — R, 5
52.A2 = R3.S3

Sipis AT =1 =% Ry Sy

51 Learningls, a — r Is a regression problem |

n Learningls. a — s’ Is a density estimation problem I

m Pick loss function, e.g. mean-squared error, KL divergence, ...

m Find parameters 1 that minimise empirical loss

David silver, lecture note

)




Examples of Models

Table Lookup Model
Linear Expectation Model
Linear Gaussian Model

Gaussian Process Model
Deep Belief Network Model

-

David silver, lecture note
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Table Lookup Model!

i i s 3 e B

m Model is an explicit MDP, PR

m Count visits N(s, a) to each state action pair

=

. 1

sl — m ; I(St-. At- St—l—l — - s’)
1 T

R2 = N(s. 2) tz:: 1(S;. Ar = s. a)Ry

m Alternatively
m At each time-step t, record experience tuple

<St- At- Rt+1- 5t+1>

m [o sample model, randomly pick tuple matching (s, a. -, -)

David silver, lecture note




Planning witha Mogel

m Given a model M, = (P,.R,)
m Solve the MDP (S, A.P,. Ry)
] Using favourite

m | Value iteration
m | Policy iteration
m | Tree search
&

David silver, lecture note




Planning with an Inaccurate Model

m Given an imperfect model (P,.R,) # (P.R)

m Performance of model-based RL is limited to optimal policy

forjanpieximate MDEJES, A, 3, Ke)

m i.e. Model-based RL is only as good as the estimated model

m When the model is inaccurate, planning process will compute

a suboptimal policy

m Solution 1: when model is wrong, us4 model-free RL

m Solution 2: reason explicitly about model uncertainty

David silver, lecture note
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ICRA 2018 Spotlight Video

NEURAL NETWORK DYNAMICS
FOR MODEL-BASED
DEEP REINFORCEMENT LEARNING
WITH MODEL-FREE FINE-TUNING

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, Sergey Levine
UC Berkeley

https://www.youtube.com/watch?v=G7IXiuEC8x0&feature=share



https://www.youtube.com/watch?v=G7lXiuEC8x0&feature=share
https://www.youtube.com/watch?v=G7lXiuEC8x0&feature=share

MODEL-BASED (ours) MODEL-FREE

REWARD: 1000 REWARD: 5000
DATAPOINTS USED: DATAPOINTS USED:
400,000 25,000,000




RUN OUR
MODEL-BASED
APPROACH

TRAIN POLICY Tig
TO IMITATE
MODEL-BASED
CONTROLLER

RUN
MODEL-FREE
ALGORITHM ON
PRE-INITIALIZED

POLICY Ty
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ICLR 2018 ~ &

Temporal Difference Models: Deep
Model-free RL for Model-based RL

Shixiang (Shane) Gu* (il tH £))

(work done at Google internship)
Co-authors: Victhyr Pong*, Murtaza Dalal, Sergey Levine (*joint first-author)

R Google  @Berkeley

https://www.youtube.com/watch?v=j-3nUkzMFA8&feature=share

= 1\\» %8!-01__'1 t 36 .
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https://www.youtube.com/watch?v=j-3nUkzMFA8&feature=share
https://www.youtube.com/watch?v=j-3nUkzMFA8&feature=share

Model-free Deep RL: limitations

“Model-free”: High sample intensity

“Deep” may not be needed (for gym benchmarks)

linear policies [Rajeswaran et. al., 2017]
maybe nearest neighbor [Mansimov et. al., 2017]

“RL" may not be needed
Evolutionary Strategies [Koutnik et. al., 2013, Salimans et. al., 2017, Such
at. al., 2017]

Potential cause: model-free RL lacks rich learning signals




V_ - ‘_"" : !
y : M-‘. \}L \; I Q-Prop/IPG [Gu et. al., 2017)
h \ l ACER [wang et. al., 2017)
PGQ [0'Donoghue et. al., 2017)

Off-policy / on-policy

&
e TDMS [ Pong*, Gu*, et. al., 2017
© TRPO (s
o Dyna-Q [Sutton et. al., 1990) et.oal.{. ;(;»:g;wan ES [Koutnik et.
c AMA-NFQ (Lampe et. al., 2014] PPO [Schulamn AR
@ a Salimans et. al.,
Q\') Model-based / off-policy et. al., 2017 2017, Such at. al.
A3C [Mnih et. al., .
= NFQCA [Hafner & Reidmiller, 2011) Ev.o?g] ' gl
x
Q@ DPG (Silver et. al., 2014,
g. Lillicrap et. al., 2016}
—~ NAF (Gu et. al., 2016, 2017)
8 GPS [Levine et, al., 2015] , ‘ \P, .
R E2C |watter.et. al., 2015}
7 )
& P2T [wahistrom et. al., 2015)
Model-based Off-policy On-policy (Evolutionary)
+10~100x~ +10~100x~ +10~100x~*
100 episodes, 20 min 1073 episodes, 3 h 1074 episodes, 1.5d >1075 episodes, >15d

Data Intensity (normalized by task complexity)

4
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Problem statements

How can we add more learning signals to model-free RL?
Prior work:
Auxiliary tasks (UNREAL) [Jaderberg et. al., 2017]
Act by prediction [Dosovitskiy et. al., 2017]
Intrinsic rewards [Mohamed et. al., 2015; etc.]
Universal value functions/Hindsight experience
replay (HER) [Schaul et. al., 2015; Andrychowicz et. al., 2017

Can model-free RL leverage as much or more learning
signals than model-based?




Experiments: Benchmarking

(a) 7-DoF Reacher (b) Pusher (¢) Half Cheetah
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TDMs are
significantly
more sample
efficient than
classic model-

(¢) Sawyer Robot
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Discussion

Infinite cherries >>> Cake

Important direction: redefine model-free RL,
e.g. how to increase supervision signals
« Per task: UVF (schaul et. al., 2015), HER

[Andrychowicz et, al., 2017], TDMS. Distributional RL
[Bellemare et. al., 2017)

+ Through many tasks: Meta learning &
transfer learning (from simulation)

- Stable RL optimization objective with
lots of learning signals = Success is
guaranteed

RL problems are exciting: many problems and
future potentials
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Google DeepMind

‘0 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/ -&c ‘ L

D:epMmd Al Reduces Goo... X || ]

Research Applied News & Blog About Us Careers

DeepMind Al Reduces Google Data Centre
Cooling Bill by 40%

From smartphone assistants to image recognition and translation, machine learning already helps us in our Migh PUE ML Control On ML Control Off
everyday lives. But it can also help us to tackle some of the world’s most challenging physical problems -- sud
energy consumption. Large-scale commercial and industrial systems like data centres consume a lot of energ / \

and while much has been done to stem the growth of energy use, there remains a lot more to do given the

world’s increasing need for computing power. M\/\J |
Reducing energy usage has been a major focus for us over the past 10 years: we have built our own super- ,\A‘w

efficient servers at Google, invented more efficient ways to cool our data centres and invested heavily in Low PUE

energy sources, with the goal of being powered 100 percent by renewable energy. Compared to five years a

now get around 3.5 times the computing power out of the same amount of energy, and we continue to make m

improvements each year.

Major breakthroughs, however, are few and far between -- which is why we are excited to share that by applying
DeepMind’s machine learning to our own Google data centres, we've managed to reduce the amount of energy we
use for cooling by up to 40 percent. In any large scale energy-consuming environment, this would be a huge
improvement. Given how sophisticated Google’s data centres are already, it's a phenomenal step forward.

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
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[EdgeX/RL/MQTT Broker]

o ke e~
ETRI KSBEEH T TH+et7| | ~ IP address = 10.0.0.1
. - Deep RL (TensorFlow/Keras)
————————————————— Setting Data P
- Deep Q-Learning
QUBE Servo?2 &=
. —_

_J [Raspberry Pi] Motor Power Bogus
- IP address = 10.0.0.2' Setting Data  Traffic Motor & Pendulum

ey | &= - Angle/Speed

[OpenFlow Switch]
- OpenVSwitch (OVS)

SPI

_
\/ Bogus Traffic Flow Rule Modification

Bogus Traffic (FLOW_MOD_PACKET)

Generator SDN Controller
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q. E'c;@b,'lJ AtdlE (4-2)

Imitational RL (22 &3} Sh5)

<@ Learning Acceleration
— with help of classical PID control model

— Fill up a large number (20,000) of good transitions (¢;,a;,7j,d;+1) into
the replay memory
(#5: @575, Bj41)

PID —~ Replay memory Random
Controller ~ | minibatch

(#4saj,Tj, Pj+1)

Reward 7 v
Agent| DQN [2¥ale

Next state ¢t+l

Action

a

Environment |

N\
/
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0, Summary

e MBRL is hot

- There were more papers than I can introduce
e Popular ideas
- Incorporating a model/planning structure into a NN
- Use model-based simulations to reduce sample complexity

e (Deep) MBRL can be a solution to drawbacks of deep RL

e However, MBRL has its own challenges
- How to learn a good model

- How to make use of a possibly bad model

NIPS2017, Tutorial
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Thank you.

ETRI, Kim Kwihoon
(kwihooi@etri.re.kr)
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