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conversation.log
*UPDATE**PENDING*

E: You ve many flaws t some goo
=] ol

V: that's a relief

E: Have you read Snow Crash?

V: never read it

E: Do you have any questions about me?
V: what's your favorite programming la
nguage

E: Don't have one.

V: you like Shoujo

E: Ok. What is your favorite manga?

V: I don't like manga

E: Then why do you read manga?’

V: no I don't read manga I can't read
E: Why can't you read?

V: I can read just fine chat
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Word?2Vec

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolov@google.com kaichen@google.com

Greg Corrado Jeffrey Dean

. Google Inc., Mountain View, CA Google Inc., Mountain View, CA
MIkOIOV et al. (201 3) gcorradol@google.com jefflgoogle.com

—] —_ . Abstract

Neural NetworkE Al&¢t Word Representation

‘We propose two novel model architectures for computing continuous vector repre-

sentations of words from very large data sets. The quality of these representations

is measured in a word similarity task, and the results are compared to the previ-

- T ously best performing techniques based on different types of neural networks. We

H I- hlﬁ-l EH ji Iﬂ-l o I H I- hlu-l . observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
data set. Furthermore, we show that these vectors provide state-of-the-art perfor-

ey - - mance on our test set for measuring syntactic and semantic word similarities.

R CBOW, Skip-Gram F 72| =& =%t

1 Introduction

Many current NLP systems and techniques treat words as atomic units - there is no notion of similar-
ity between words, as these are represented as indices in a vocabulary. This choice has several good
reasons - simplicity, robustness and the observation that simple models trained on huge amounts of
data outperform complex systems trained on less data. An example is the popular N-gram model
used for statistical language modeling - today, it is possible to train N-grams on virtually all available
data (trillions of words [3]).

However, the simple techniques are at their limits in many tasks. For example, the amount of
relevant in-domain data for automatic speech recognition is limited - the performance is usually
dominated by the size of high quality transcribed speech data (often just millions of words). In
machine translation, the existing corpora for many languages contain only a few billions of words
or less. Thus, there are situations where simple scaling up of the basic techniques will not result in
any significant progress, and we have to focus on more advanced techniques.

With progress of machine learning techniques in recent years, it has become possible to train more
complex models on much larger data set, and they typically outperform the simple models. Probably
the most successful concept is to use distributed representations of words [10]. For example, neural
network based language models significantly outperform N-gram models [1, 27, 17].
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King - Man + Woman

= Queen



https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html
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GloVe

Jeffrey et al.(2014) - Stanford

Word2VecO| 4| X 2l dH (Statistical Information) =
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GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305
jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy ‘“king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king —
queen = man — woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

‘We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.
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Fasttext

Bojanowski et al.(2017)
Word2Vec2 9HE MikolovZ} ¢0j %t0f
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<wh, whe, her, ere, re>

and the special sequence

<where>.

Enriching Word Vectors with Subword Information

Piotr Bojanowski*and Edouard Grave*and Armand Joulin and Tomas Mikolov
Facebook Al Research
{bojanowski, egrave,ajoulin, tmikolov}@fb.com

Abstract

Continuous word representations, trained on
large unlabeled corpora are useful for many
natural language processing tasks. Popular
models that learn such representations ignore
the morphology of words, by assigning a dis-
tinct vector to each word. This is a limitation,
especially for languages with large vocabular-
ies and many rare words. In this paper, we pro-
pose a new approach based on the skipgram
model, where each word is represented as a
bag of character n-grams. A vector represen-
tation is associated to each character n-gram;
words being represented as the sum of these
representations. Our method is fast, allow-
ing to train models on large corpora quickly
and allows us to compute word representations
for words that did not appear in the training
data. We evaluate our word representations on
nine different languages, both on word sim-
ilarity and analogy tasks. By comparing to
recently proposed morphological word repre-
sentations, we show that our vectors achieve
state-of-the-art performance on these tasks.

1 Introduction

Learning continuous representations of words has a
long history in natural language processing (Rumel-
hart et al., 1988). These representations are typ-
ically derived from large unlabeled corpora using
co-occurrence statistics (Deerwester et al., 1990;
Schiitze, 1992; Lund and Burgess, 1996). A large
body of work, known as distributional semantics,
has studied the properties of these methods (Turney

*The two first authors contributed equally.

et al., 2010; Baroni and Lenci, 2010). In the neural
network community, Collobert and Weston (2008)
proposed to learn word embeddings using a feed-
forward neural network, by predicting a word based
on the two words on the left and two words on the
right. More recently, Mikolov et al. (2013b) pro-
posed simple log-bilinear models to learn continu-
ous representations of words on very large corpora
efficiently.

Most of these techniques represent each word of
the vocabulary by a distinct vector, without param-
eter sharing. In particular, they ignore the internal
structure of words, which is an important limitation
for morphologically rich languages, such as Turk-
ish or Finnish. For example, in French or Spanish,
most verbs have more than forty different inflected
forms, while the Finnish language has fifteen cases
for nouns. These languages contain many word
forms that occur rarely (or not at all) in the training
corpus, making it difficult to learn good word rep-
resentations. Because many word formations follow
rules, it is possible to improve vector representations
for morphologically rich languages by using charac-
ter level information.

In this paper, we propose to learn representations
for character n-grams, and to represent words as the
sum of the n-gram vectors. Our main contribution
is to introduce an extension of the continuous skip-
gram model (Mikolov et al,, 2013b), which takes
into account subword information. We evaluate this
model on nine languages exhibiting different mor-
phologies, showing the benefit of our approach.
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LSTM GRU

output

recurrent
block output ¢'!V' rE'l':.urrent
output gate o’ +*

O’(XtUi +h, W'+ b;) LSTM block

o(x; U’ +h W7 +by)
o(xU% 4+ h;_1W? + b,)
LSTM . = tanh(x;U?+h;_ W7+ b,)
fi *pr—1 + 1 xqs

o * tanh(p¢)

peepholes

4 forget gate

input
2z =0 (W, - [hi—1, 7))

GRU hy = tanh (W - [ry * hy_1, 2¢])

ht ( — '?'t) * h.,tfl + zp % ilt

unweighted connection @®  branching point

http.//colah.github.i ts/2075-08-Understanding-LSTM:
p.7/colah.github.io/posts/: nderstanding s/ wilineomuetion IR —_—

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

Klaus Greff et al. as published in LSTM: A Search Space Odyssey.
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CNN

n % k representation of
sentence with static and
non-static channels

I

Convolutional layer with Max-over-time Fully connected layer
multiple filter widths and pooling with dropout and
feature maps softmax output

Convolutional Neural Networks for Sentence Classification (Kim, Y. 2074)

activation function

convolution 1-max softmax function
oolin regularization

p 9 in this layer

3 region sizes: (2,3,4) 2 feature

Sentence matrix 2 filters for each region maps for 6 univariate
7x5 size each vectors
totally 6 filters region size concatenated

together to form a
single feature

Sentence classification with CNNs ( Zhang and Wallace, 2015)
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



CNN

activation function

convolution 1-max softmax function

oolin regularization
P 9 in this layer

3 region sizes: (2,3,4) 2 feature

Sentence matrix 2 filters for each region maps for 6 univariate
7x5 size each vectors
totally 6 filters region size concatenated

together to form a
single feature

n % k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Sentence classification with CNNs ( Zhang and Wallace, 2015)
Convolutional Neural Networks for Sentence Classification (Kim, Y. 2074) http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



Encoder-Decoder

Sequence to Sequence Learning
with Neural Networks

Tlya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasulgoogle.com vinyals@google.com qvl@google.com

Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-

lent performance on difficult learning tasks. Although DNNs work well whenever

large labeled training sets are available, they cannot be used to map sequences to

sequences. In this paper, we present a general end-to-end approach to sequence

learning that makes minimal assumptions on the sequence structure. Our method

uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence

(] S uts keve r et a I . (2 0 1 4 G oog I e) to a vector of a fixed dimensionality, and then another deep LSTM to decode the

’ target sequence from the vector. Our main result is that on an English to French

translation task from the WMT-14 dataset, the translations produced by the LSTM

achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU

[ E 7:| I'I O I N M T E :'" o I Al II‘ score was penalized on out-of-vocabulary words. Additionally, the LSTM did not

e 1 71 L = | have difficulty on long sentences. For comparison, a phrase-based SMT system

achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM

to rerank the 1000 hypotheses produced by the aforementioned SMT system, its

R N N o Al‘ 2 -6-“ I t —l } t t o d I . -6-'_ Eé,;:ﬁ :‘Sorel incre:ses tob316.5in\jvhichi; close to the previous statc;l of the art. The

— —3 also learned sensible phrase and sentence representations that are sensitive

E (=] n p u J- o u p u E m o e I n g [ =] to word order and are relativily invariant to the acfive and the passive voice. Fi-

nally, we found that reversing the order of the words in all source sentences (but

not target sentences) improved the LSTM’s performance markedly, because doing

so introduced many short term dependencies between the source and the target
sentence which made the optimization problem easier.

1 Introduction

Deep Neural Networks (DNN5s) are extremely powerful machine learning models that achieve ex-
cellent performance on difficult problems such as speech recognition [13, 7] and visual object recog-
nition [19, 6, 21, 20]. DNNs are powerful because they can perform arbitrary parallel computation
for a modest number of steps. A surprising example of the power of DNNs is their ability to sort
N N-bit numbers using only 2 hidden layers of quadratic size [27]. So, while neural networks are
related to conventional statistical models, they learn an intricate computation. Furthermore, large
DNNs can be trained with supervised backpropagation whenever the labeled training set has enough
information to specify the network’s parameters. Thus, if there exists a parameter setting of a large
DNN that achieves good results (for example, because humans can solve the task very rapidly),
supervised backpropagation will find these parameters and solve the problem.

Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets
can be sensibly encoded with vectors of fixed dimensionality. It is a significant limitation, since
many important problems are best expressed with sequences whose lengths are not known a-priori.
For example, speech recognition and machine translation are sequential problems. Likewise, ques-
tion answering can also be seen as mapping a sequence of words representing the question to a
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e if | can give this restauranti@i@ll will we be just ask our waitress leave because someone with a reservation be
wait for our table my father and father-in-law be still finish up their coffee and we have not yet finish our dessert |
have never be so humiliated do not go to this restaurant their food [FElTEaIGGTeNE best if you want excellent Italian
in a small intimate restaurant go to dish on the South Side | will not be go back

« [RiSIFEEEISUERINE foodlBaIGrossiand taste like grease | will never go here again ever sure the entrance look cool
and the waiter can be very nice but the food simply be gross taste like cheap 99cent food do not go here the food
shot out of me quick then it go in

= everything be pre cook and d most Filipino people be used to very cheap ingredient and they do not
know quality the food have eat at least 20 different Filipino family home this not even mediocre

« EEOUSIT thisIPEEEIMISEUSIIEaE and shitty service ambience be great if you like dine in a hot cellar engulf in
stagnate air truly it be over rate over price and they just under deliver forget try order a drink here it will take
torever get and when it finally do arrive you will be ready pass out from heat exhaustion and lack of oxygen how
be that a head change you do not even have pay for it | will not disgust you with the detailed review of everything |
have try here but make it simple it all suck and after you get the bill you will be walk out with a sore ass save your
money and spare your sel_

i be'S0'angry'aBelt my horrible experience at Medusa today my previous visit be amaze 5/5 however my go to out
of town and | land an appointment with Stephanie | go in with a picture of roughly what |1 want and come out look
absolutely nothing like it my hair be* blonde not anywhere close to the platinum blonde | request
she will not do any of the pop of colour | want and even after specifically tell her | do not like blunt cut my hair
have lot of straight edge she do not listen to a single thing | want and when | tell her | be unhappy with the colour
she basically tell me | be wrong and | have do it this way no no | do not if | can go from Little Mermaid red to
golden blonde in 1 sitting that leave my hair fine | shall be able go from golden blonde to a shade of platinum
blonde in 1 sitting thanks for ruin my New Year's with 1 job | have ever have

(a) 1 star reviews

o EEIIERIGY Ashley and Ami salon she do a great job be friendly and professional | usually get my hair do when |
o to Ml because of the quality of the highlight and the price the price be very aﬂordablb

Ashley i highly recommend you and ill be back

o [BUEHAIE placelififSalIBEIMIEVGHIE restaurant in Charlotte they use charcoal for their grill and you can taste it
steak with chimichurri be always perfect Fried yucca cilantro rice pork sandwich and the lech | have
had.The desert beﬂyou do not like it you be a mutant if you will like diabeetus try the Inca Cola

e this place be solfillGHIURN have never go at night because it seem a little too busy for my taste but that just prove
how great this restaurant be they have amazing food and the staff definitely remember us every time we be in
town | love when a waitress or waiter come over and ask if you want the cab or the Pinot even when there be a
rush and the staff be run around like crazy whenever | grab someone they instantly smile acknowlegde us the
food be also killer | love when everyone know the special and can tell you they have try them all and what they
pair well with this be a first last stop whenever we be in Charlotte and | highly recommend them

« FiCENieoaIEReEGood setvice ... what else can you ask for everything that | have ever try here have be great

s first off | hardly remember waiter name because its rare you have an unforgettable experience the day | go | be
celebrate my birthday and let me say | leave feel extra special our waiter be the best ever Carlos and the staff as
well | be with a party of 4 and we order the potato salad shrimp cocktail lobster amongst other thing and boy be
the food great the lobster be the good lobster | have ever eat if you eat a dessert | will recommend the cheese
cake that be also the good | have ever have it be expensive but so worth every penny | will definitely be back
there go again for the second time in a week and it be even good ...... this placeh

(b) 5 star reviews

Figure 2: Heatmap of Yelp reviews with the two extreme score.
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NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder-decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder-decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.

1 INTRODUCTION

Neural machine translation is a newly emerging approach to machine translation, recently proposed
by Kalchbrenner and Blunsom (2013), Sutskever ef al. (2014) and Cho er al. (2014b). Unlike the
traditional phrase-based translation system (see, e.g., Koehn er al., 2003) which consists of many
small sub-components that are tuned separately, neural machine translation attempts to build and
train a single, large neural network that reads a sentence and outputs a correct translation.

Most of the proposed neural machine translation models belong to a family of encoder—
decoders (Sutskever et al., 2014; Cho et al., 2014a), with an encoder and a decoder for each lan-
guage, or involve a language-specific encoder applied to each sentence whose outputs are then com-
pared (Hermann and Blunsom, 2014). An encoder neural network reads and encodes a source sen-
tence into a fixed-length vector. A decoder then outputs a translation from the encoded vector. The
whole encoder—decoder system, which consists of the encoder and the decoder for a language pair,
is jointly trained to maximize the probability of a correct translation given a source sentence.

A potential issue with this encoder—decoder approach is that a neural network needs to be able to
compress all the necessary information of a source sentence into a fixed-length vector. This may
make it difficult for the neural network to cope with long sentences, especially those that are longer
than the sentences in the training corpus. Cho et al. (2014b) showed that indeed the performance of
a basic encoder-decoder deteriorates rapidly as the length of an input sentence increases.

In order to address this issue, we introduce an extension to the encoder—decoder model which learns
to align and translate jointly. Each time the proposed model generates a word in a translation, it
(soft-)searches for a set of positions in a source sentence where the most relevant information is
concentrated. The model then predicts a target word based on the context vectors associated with
these source positions and all the previous generated target words.

*CIFAR Senior Fellow
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Slide: Text generation with attention, GTC 2017, Valentin Malykh (2017)
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Deep contextualized word representations
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Abstract

We introduce a new type of deep confextual-
ized word representation that models both (1)
cormplex characteristics of w 1 YTk
tax and semantics), amd wees
vary across linguistic conte o model
polysemy). Our word vectors are leamned fu
tions of the internal states of a deep bidin
tional language model (BLM), which is pre-
trained on a large text corpus. We show thar
these representations be easily added o
existing models and signil tly improve the
state of the am across six challenging NMLP
problems, incleding question answering., tex-
tmal entailment and sentiment analy Wie
aleo present an analyais showing that exposing
intermals of the pre-trained netwaork is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

Introduction

Pre-trained word representations (Mikolov et al.,
2013%; Pennington et al, 2014) are a key compo-
nent in many neural language understanding mod-
els. However, learning high quality representa-
tons can be challenging. They should ideally
maodel both (1) complex characteristics of word
use (e.g., syntax and semantics), and (2} how these
uses vary across linguistic contexts (i.e., o model
pelysemy). In this paper, we introduce a new type
of deep contextualized word representation that
directly addresses both challenges. can be casily
integrated into existing models, and significantly
improves the state of the art in every considered
case across a range of challenging language un-
derstanding problems.

Our representations differ from traditional word
type embeddings in that each token is assigned a
represcntation that is a function of the entire input
sentence. We use vectors derived from a bidirec-
tonal LSTM that is trained with a coupled lan-

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from Language Models) representations.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al., 20017; MceCann
et al, 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the bilM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised
word sense disambiguation tasks) while lower-
level states model aspects of syntax (e.g., they can
be used to do part-of-speech tagging). Simultane-
ously exposing all of these signals is highly bene-
ficial, allowing the learned models select the types
of semi-supervision that are most useful for each
end task.

Extensive experiments demonstrate that ELMo
representations work extremely well in practice.
We first show that they can be casily added to
existing models for six diverse and challenging
language understanding problems, including tex-
tual entailment, question answernng and sentiment
analysis. The addition of ELMo representations
alone significantly improves the state of the ant
in every case, including up to 20¢% relative error
reductions.  For tasks where direct comparisons
are possible, ELMo outperforms CoVe (McoCann
et al, 2017), which computes contextualized rep-
resentations using a neural machine translation en-
coder.  Finally, an analvsis of both ELMo and
CoVe reveals that deep representations outperform
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GloVe

Chico Ruiz made a spec-
tacular play on Alusik ’s

grounder {... }
Olivia De  Havilland

signed to do a Broadway
play for Garson {...}

Nearest Neighbors

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

Table 4: Nearest neighbors to “play™ using GloVe and the context embeddings from a biLM.

GloVe: £t0{ Representation 117, PlayX & CIYst £2 7%l THO|E H7| & = 2AUS

BiLM: 2% TH?l 2 PlayQ| "E{Z{0] Hetrt M= 2537], FHME A=
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks include an encoder and a decoder. The best

L] [ ] erl'urmmg models also connect I.hl.. Ln(.udt.r .md dLLDdLr through an attention
Mu tl ea Aﬂentlon i & & ic eichi = gmmm::l.u-n.n io

on tasks show the
ah. d requiring sig
Tb BLEU on the WMT 2014 Engl h-
isting best results, including
ish-to-French translation L

ul.hl.r ldaka by .ippl\dll e it \uu.l.\:sfully to Engllah constituency p.ﬂ.r\l.rlg both with
large and limited training data.

Point-wise Feed-Forward Networks —

Recurrent neural networks, long short-term memory [13] and gated urrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

"Waork performed while at G
"Work performed while at G

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, C
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GPT (Generative Pre-training)
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Language Models are Unsupervised Multitask Learners
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GPT2 - Zero-Shot Learning
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Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.
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GPT2 - Zero-Shot Learning

o | Language Models are Unsupervised Multitask Learners
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1 ” LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103 IBW

e T{} * (PPL) (ACC) (ACC) (ACC) (PPL) (PPL)  (BPB)  (BPC) (PPL) (PPL)

iﬁél ‘b ‘_ SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8

! , § Y | 117M 35.13 45.99 87.65 834 2941 65.85 1.16 1.17 37.50 75.20

™ B\ ey | 345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72

L_mnae e 762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44,575
= 1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).
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BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin  Ming-Wei Chang Kenton Lee
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Abstract

We  introdu d new language representa-

called BERT, which stands for

ford et al., 2018)
train deep bidi

(1.5 point absolute im-
t} and SQuAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al,, 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering,
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers
of the Transformer (Vaswani et al., 2017). Such re-
strictions are sub-optimal for sentence-level tasks,
and could be very harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both directions.

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “‘masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, 1953). The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked
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o Brain MLM (Mask Language Model)
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o Brain NSP (Next Sentence Prediction)
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XL Net: Generalized Autoregressive Pretraining
for Language Understanding
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Two-Stream Self Attention
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Two-Stream Self Attention
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Transformer-XL: Attentive Language Models
Beyond a Fixed-Length Context
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Abstract

pole
but are limited by a

modeling,
chitecture Tran
ing dependency
out disrupting
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t, Transformer-
XL learns depend & longer than
RNNs and 450 illa Trans-
formers, achieves better performance on both
short and long sequ and is up o
times faster than vanilla Transformers during
uation. Notably, wi

s 1o generate reasonably coh
ds of tol
: :1s, and hyperp
ailable in both Tensorflow

1 Introduction

Language modeling is among the important prob-
lems that require modeling long-term dependency,
with successful applications such as unsupervised
pretraining (Dai and Le. 5; Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2018). How-
ever, it has been a challenge to equip neural
networks with the capability to model long-term
dependency in sequential data. Recurrent neu-
ral networks (RNINs), in particular Long Short-

akhul} @ .edu,

Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997), have been a standard solu-
tion to language modeling and obtained strong
results on multiple benchmarks. Despite the
wide adaption, RNNs are difficult to optimize
due to gradient vanishing and explosion (Hochre-
iter et al.,, 2001), and the introduction of gat-
ing in LSTMs and the gradient clipping tech-
nique (Graves, 2013) might not be sufficient to
fully address this issue. Empirically, previous
work has found that LSTM language models use
200 context words on average (Khandelwal et al.,
2018), indicating room for further improvement.

On the other hand, the direct connections be-
tween long-distance word pairs baked in atten-
tion mechanisms might ease optimization and en-
able the learning of long-term dependency (Bah-
danau et al., 2014; Vaswani et al.,, 2017). Re-
cently, Al-Rfou et al. (2018) designed a set of aux-
iliary losses to train deep Transformer networks
for character-level language modeling, which out-
perform LSTMs by a large margin. Despite the
success, the LM training in Al-Rfou et al. (2018)
is performed on separated fixed-length segments
of a few hundred characters, without any informa-
tion flow across segments. As a consequence of
the fixed context length, the model cannot capture
any longer-term dependency beyond the prede-
fined context length. In addition, the fixed-length
segments are created by selecting a consecutiv
chunk of symbols without respecting the sente:
or any other semantic boundary. Hence, the model
lacks necessary contextual information needed to
well predict the first few symbols, leading to inef-
ficient optimization and inferior performance. We
refer to this problem as context fragmentation.

To address the aforementioned limitations of
fixed-length contexts, we propose a new architec-
ture called Transformer-XL. (meaning extra long).
‘We introduce the notion of recurrence into our
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RoBERTa

Liu et al. (2019)
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ent a replication study
evlin et 2 019 ¢
the impact of many key hy

rformance of every mod
;1 it.  Our best model achieve:
results on GLUE, RACE and
SQuAD. These results highlight
tance of 00l

cently reported improvements. We
215 and code.

1 Introduction

Self-training methods such as ELMo (Peters et al.,
2018), GPT (Radford etal., 2018), BERT
(Devlin et al., 2019), XLLM (Lample and Conneau,
2019), and XLNet (Yangetal, 2019) have
brought significant performance gains, but it can
be challenging to determine which aspects of
the methods contribute the most. Training is
computationally expensive, limiting the amount
of tuning that can be done, and is often done with
private training data of varying sizes, limiting
our ability to measure the effects of the modeling
advances.

" Equal contribution.

'Our models and code are av:
g it hub

We present a replication study of BERT pre-
training (Devlin et al.,, 2019}, which includes a
careful evaluation of the effects of hyperparmeter
tuning and training set size. We find that BERT
was significantly undertrained and propose an im-
proved recipe for training BERT models, which
we call RoBERTa, that can match or exceed the
performance of all of the post-BERT methods.
Our modifications are simple, they include: (1)
training the model longer, with bigger batches,
over more data; (2) removing the next sentence
prediction objec 3) training on longer s
quences; and (4) dynamically changing the mask-
ing pattern applied to the training data. We also
collect a large new dataset (CC-NEWS) of compa-
rable size to other privately used datasets, to better
control for training set size effects.

When controlling for training data, our im-
proved training procedure improves upon the pub-
lished BERT results on both GLUE and SQuAD.
‘When trained for longer over additional data, our
model achieves a score of 88.5 on the public
GLUE leaderboard, matching the &8.4 reported
by Yangetal. (2019). QOur model establishes a
new state-of-the-art on 4/9 of the GLUE t
MNLL QNLL RTE and STS-B. We also match
state-of-the-art results on SQuAD and RACE.
Overall, we re-establish that BERT's masked lan-
guage model training objective is competitive
with other recently proposed training objectives
such as perturbed autoregressive language model-
ing (Yang et al., 2019).2

In summary, the contributions of this paper
are: (1) We present a set of important BERT de-
sign choices and training strategies and introduce

“It is possible that these other methods could also improve
with more tuning. We leave this exploration to future work.
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Rank Name Model ] {8 Score

Facebook Al RoBERTa

XLNet Team XLNet-Large (ensemble)

Microsoft D365 Al & MSR Al  MT-DNN-ensemble
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28 H492|=: LA Times2| Quakebot

Here’s Monday morning’s initial Quakebot report:

A shallow magnitude 4.7 earthquake was reported Monday morning five miles from
Westwood, California, according to the U.S. Geological Survey. The temblor occurred
at 6:25 a.m. Pacific time at a depth of 5.0 miles.

According to the USGS, the epicenter was six miles from Beverly Hills, California,
seven miles from Universal City, California, seven miles from Santa Monica,

California and 348 miles from Sacramento, California. In the past ten days, there
have been no earthquakes magnitude 3.0 and greater centered nearby.

This information comes from the USGS Earthquake Notification Service and this
post was created by an algorithm written by the author.

Read more about Southern California earthquakes.

X|El0] HOojLExtOrkt, SA4Ho = iy YEHS HE


https://slate.com/technology/2014/03/quakebot-los-angeles-times-robot-journalist-writes-article-on-la-earthquake.html
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— Music Generation (IBM)
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88| =82/ - Chef Watson (IBM)

Cognitive Cooking
with Chef Watson

2| AlZ| X (Cognitive Cooking)

Flavor Map: 7+2 2|117|2} Z0{EE|

rir

http.//chefnews.kr/archives/1497
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