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𝑝 𝛚 𝐗, 𝐘 =
𝑝 𝐘 𝐗, 𝛚 𝑝(𝛚)

𝑝(𝐘|𝐗)

Training a certain neural network model is equivalent to obtaining a posterior 𝑝(𝛚|𝐗, 𝐘). 

likelihood prior

evidence (or marginal likelihood)

In general, the model is obtained by solving optimization problem.

ℒ 𝛚 = log 𝑝(𝐘|𝐗, 𝛚) + log 𝑝(𝛚)

If we assume that the likelihood is Gaussian distribution 𝑝 𝐘 𝐗, 𝛚 ∝ exp
𝐘−𝐟𝛚 𝐗

2

2σ2 and also 

the prior is Gaussian distribution 𝑝 𝛚 ∝ 𝒆𝒙𝒑
‖ ‖𝛚 𝟐

2𝑙2 , then the minimization objective is

ℒ 𝛚 = 𝐘 − 𝐟𝛚 𝐗
2

+
‖ ‖𝛚 𝟐

2𝑙2
+ const.

L2-norm (MSE) L2-regularization

𝑙: prior length scale 
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𝑝 𝐡𝐲𝐩𝐨𝐭𝐡𝐞𝐬𝐢𝐬 𝐝𝐚𝐭𝐚 =
𝑝 𝐝𝐚𝐭𝐚 𝐡𝐲𝐩𝐨𝐭𝐡𝐞𝐬𝐢𝐬 × 𝑝(𝐡𝐲𝐩𝐨𝐭𝐡𝐞𝐬𝐢𝐬)

𝑃(𝐝𝐚𝐭𝐚)

Bayesian’s eye

: how to do inference about hypotheses (uncertain quantities) from data (measured quantities).

https://www.youtube.com/watch?v=FD8l2vPU5FY&t=2s

http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Bayesian let all quantities, except 

data, as uncertain quantities.

https://www.youtube.com/watch?v=FD8l2vPU5FY&t=2s
http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html
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Frequentist inference: model parameters and predicted output is deterministic. 

• Frequentist model estimation:  𝛚 = argmax
𝛚∈Ω

ℒ 𝛚

• Maximum-a-posteriori (MAP) estimation:  𝛚 = argmax
𝛚∈Ω

𝑝 𝐘|𝐗, 𝛚 𝑝(𝛚)

• Maximum-likelihood estimation (MLE) :  𝛚 = argmax
𝛚∈Ω

𝑝 𝐘|𝐗, 𝛚
Assuming prior has a 

uniform distribution

• Frequentist inference: 𝐲∗ = f  𝛚 𝐱∗

Bayesian inference: model parameters and predicted output are probabilistic (have distributions). 

In other words, it allows to model ‘uncertainty’ over parameters.

𝑝 𝐲∗ 𝐱∗, 𝐗, 𝐘 =  𝑝 𝐲∗|𝐱∗, 𝛚 𝑝(𝛚|𝐗, 𝐘) 𝑑𝛚

In this reason, we can estimate the uncertainty of our prediction by measuring the variance of 

predictive distribution 𝑝 𝐲∗ 𝐱∗, 𝐗, 𝐘 .
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 w = argmax
w∈𝒲

𝑝 w X, Y𝑝 y∗ x∗ = f  w(x∗)

Inference from maximum-a-posteriori (MAP) model estimation

Inference from Bayesian model estimation

𝑝 y∗ x∗, X, Y =  
𝑤∈𝒲

𝑝 y∗ x∗, w 𝑝 w X, Y 𝑑w

Summation over all possible model posteriors

Then, our inference will have a distribution instead of a single deterministic value.

Choosing the posterior 

which can explain the given data distribution the best.

Then, our inference will be a single deterministic value.

→ The uncertainty on model parameter give the uncertainty on our inference
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All possible posteriors

https://www.youtube.com/watch?v=1ClZhMSHeBA

MAP predictive distribution

𝑝 y∗ x∗ = f  w(x∗)

𝒑 𝒘 𝑿, 𝒀

MAP model estimation

 𝐰 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐰∈𝓦

𝒑 𝐰 𝐗, 𝐘

Bayesian predictive distribution

https://www.youtube.com/watch?v=1ClZhMSHeBA
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MAP predictive distribution Bayesian predictive distribution

𝑝 y∗ x∗, X, Y =  
𝑤∈𝒲

𝑝 y∗ x∗, w 𝑝 w X, Y 𝑑w𝑝 y∗ x∗ = f  w(x∗)

https://www.youtube.com/watch?v=1ClZhMSHeBA

MAP model estimation

 𝐰 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐰∈𝓦

𝒑 𝐰 𝐗, 𝐘

https://www.youtube.com/watch?v=1ClZhMSHeBA
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Bayesian inference and uncertainty 

𝒑 𝐲∗ 𝐱∗, 𝐗, 𝐘 =  
𝒘∈𝓦

𝒑 𝐲∗ 𝐱∗, 𝐰 𝒑 𝐰 𝐗, 𝐘 𝒅𝐰𝑽𝒂𝒓[𝒑(𝐲∗|𝐱∗, 𝐗, 𝐘)]

We can estimate the uncertainty on our inference as variance of predictive distribution

“Knowing what we don’t know” is as important as “knowing itself”.

http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html

http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html
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Limitations of Frequentist’s model estimation:

 MAP estimation only considers a single point estimate:

It may fails when the posterior have a multi-modal distribution in which the highest mode is 

uncharacteristic of the majority of the distribution.

http://alinlab.kaist.ac.kr/resource/Lec8_Bayesian_DL.pdf

http://alinlab.kaist.ac.kr/resource/Lec8_Bayesian_DL.pdf
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Limitations of Bayesian’s model estimation:

Bayesian inference: model parameters and predicted output are probabilistic (have distributions).

http://alinlab.kaist.ac.kr/resource/Lec8_Bayesian_DL.pdf

http://alinlab.kaist.ac.kr/resource/Lec8_Bayesian_DL.pdf
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Limitations of Bayesian’s model estimation:

Bayesian inference: model parameters and predicted output are probabilistic (have distributions).

𝑝 𝐲∗ 𝐱∗, 𝐗, 𝐘 =  𝑝 𝐲∗|𝐱∗, 𝛚 𝑝(𝛚|𝐗, 𝐘) 𝑑𝛚

𝑝 𝛚 𝐗, 𝐘 =
𝑝 𝐘 𝐗, 𝛚 𝑝(𝛚)

𝑝(𝐘|𝐗)

likelihood prior

evidence (or marginal likelihood)

 Choice of prior

: Is assuming prior as Gaussian distribution correct? How can we choose a good prior?

 Posterior is usually intractable

: good approximation is needed, but it often hurts the quality of approximated posterior. 
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Recommend to read the review article written by Zoubin Ghahramani.

I think that this article is good for beginners.
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A neural network model, which is consisted of trainable parameters 𝜔
and trained with  training data set 𝐷 = {𝑋, 𝑌}

𝑝 𝛚 𝐗, 𝐘 =
𝑝 𝐘 𝐗, 𝛚 𝑝(𝛚)

𝑝(𝐘|𝐗)

Bayesian model

1. Model parameters are not deterministic but probabilistic.

2. Model outputs are not deterministic but have distributions.

𝑝 𝐲∗ 𝐱∗, 𝐗, 𝐘 =  
Ω

𝑝 𝐲∗ 𝐱∗, 𝛚 𝑝 𝛚 𝐗, 𝐘 𝑑𝛚

posterior

prior

Bayesian inference

However, using above formulation directly isn’t practical, because

• the posterior is intractable.

• the integration of parameters over whole parameter space Ω is also impossible.
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1. Variational inference: 𝒑 𝛚 𝐗, 𝐘 ≈ 𝒒𝜃 𝛚
- Fully Factorized Gaussian (FFG), also referred as mean-field approximation

Blundell, Charles, et al. "Weight uncertainty in neural networks." arXiv preprint 

arXiv:1505.05424 (2015).

- Multiplicative Normalizing Flow (MNF) 

Louizos, Christos, and Max Welling. "Multiplicative normalizing flows for variational bayesian

neural networks." arXiv preprint arXiv:1703.01961 (2017).

- Dropout network

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing 

model uncertainty in deep learning." international conference on machine learning. 2016.

- … 

2. Laplace approximation: pointwise estimation assisted with posterior curvature.

3. Markov chain Monte Carlo (MCMC): running Markov chains for Monte Carlo estimate 

of the posterior.

Today’s topic
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𝑝 𝛚 𝐗, 𝐘 ≈ 𝑞𝜃 𝛚

Reparameterization trick using variational parameter 𝜃

Kullback-Leibeler divergence

: metric to make two distributions similar

KL 𝑞𝜃(𝛚)‖𝑝 𝛚 𝐗, 𝐘 =  
Ω

𝑞𝜃 𝛚 log
𝑞𝜃(𝛚)

𝑝(𝛚|𝐗, 𝐘)
𝑑𝛚

Still intractable because the posterior exists in the KL term.

ℒ𝑉𝐼(𝜔) = −  
Ω

𝑞𝜃 𝛚 log 𝑝 𝐘 𝐗, 𝛚 𝑑𝛚 + KL 𝑞𝜃(𝛚)‖𝑝 𝛚

𝑝 𝛚 𝐗, 𝐘 =
𝑝 𝐗, 𝐘 𝛚 𝑝(𝛚)

𝑝(𝐗, 𝐘)
= 𝑝 𝐘 𝐗, 𝛚 𝑝(𝛚)

𝑝(𝐗)

𝑝(𝐗, 𝐘)

Minimization objective is equivalent to minimizing the evidence lower-bound (ELBO).
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Therefore, our minimization objective is

KL 𝑞𝜃(𝛚)‖𝑝 𝛚 𝐗, 𝐘 = −  
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 + KL 𝑞𝜃(𝛚)‖𝑝 𝛚

= −  

𝑖=1

𝑁

 
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 + KL 𝑞𝜃(𝛚)‖𝑝 𝛚

Instead of performing computations over the entire dataset, we may use data sub-sampling, also 

referred to as mini-batch optimization.

KL 𝑞𝜃(𝛚)‖𝑝 𝛚 𝐗, 𝐘 = −
𝑁

𝑀
 

𝑖∈𝑆

𝑀

 
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 + KL 𝑞𝜃(𝛚)‖𝑝 𝛚

→
1

𝑀
 

𝑖∈𝑆

𝑀

 
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 +
1

𝑁
KL 𝑞𝜃(𝛚)‖𝑝 𝛚

Gal, Yarin. "Uncertainty in deep learning." University of Cambridge (2016).
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For practical applications, the integration over whole parameter space can be replaced to 

summation of subsampled parameters with a Monte Carlo (MC) estimator.

ℒ𝑉𝐼 𝜃 = −
1

𝑀
 

𝑖∈𝑆

 
Ω

log 𝑝 𝐲𝑖 𝐟𝛚 𝐱𝑖 𝑞𝜃 𝛚 𝑑𝛚 +
1

𝑁
KL 𝑞𝜃(𝛚)‖𝑝(𝛚)

= −
1

𝑀
 

𝑖∈𝑆

 
Ω

log 𝑝 𝐲𝑖 𝐟𝑔 𝜃,𝛜 𝐱i 𝑝 𝛜 𝑑𝛜 +
1

𝑁
𝐾𝐿 𝑞𝜃(𝛚)‖𝑝(𝛚)

 ℒ𝑀𝐶(𝜃) = −
1

𝑀
 

𝑖∈𝑆

log 𝑝 𝐲𝑖 𝐟𝑔 𝜃,𝛜 𝐱𝑖 +
1

𝑁
KL 𝑞𝜃(𝛚)‖𝑝(𝛚)

We can then estimate the predictive distribution with MC integration as well.

 𝑞𝜃 𝐲∗|𝐱∗ ≔
1

𝑇
 

𝑡=1

𝑇

𝑝 𝐲∗ 𝐱∗,  𝛚𝑡
𝑇→∞

 𝑝  𝐲∗  𝐱∗, 𝛚 𝑞𝜃 𝛚 𝑑𝛚

≈  𝑝  𝐲∗  𝐱∗, 𝛚 𝑝 𝛚|𝐗, 𝐘 𝑑𝛚

= 𝑝( 𝐲∗| 𝐱∗, 𝐗, 𝐘)

Gal, Yarin. "Uncertainty in deep learning." University of Cambridge (2016).
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• Dropout as one of the stochastic regularization techniques

In Bayesian neural networks, the stochasticity comes from our uncertainty over the model parameters. 

We can transform dropout’s noise from the feature space to the parameter space as follows.

𝐲 =  𝐡𝐌2

= 𝐡 ⊙  𝛜2 𝐌2

= 𝐡 ⋅ diag  𝛜2 𝐌2

= σ  𝐱𝐌1 + 𝐛 diag  𝛜2 𝐌2

= σ 𝐱 ⊙  𝛜1 𝐌1 + 𝐛 diag  𝛜2 𝐌2

= σ 𝐱 ⋅ diag  𝛜1 𝐌1 + 𝐛 (diag  𝛜2 𝐌2)

writing  𝐖1 ≔ diag  𝛜1 𝐌1 and  𝐖2 ≔ diag  𝛜2 𝐌2, we end up with

𝐲 = σ 𝐱  𝐖1 + 𝐛  𝐖2 =: 𝐟
 𝐖1,  𝐖2,𝐛(𝐱)

with random variable realizations as weights, and write  𝛚 = {  𝐖1,  𝐖2, 𝐛}



ACE Team @ KAIST

Dropout network

19Gal, Yarin. "Uncertainty in deep learning." University of Cambridge (2016).

𝐲 = σ 𝐱  𝐖1 + 𝐛  𝐖2 + 𝐛2 =: 𝐟
 𝐖1,  𝐖2,𝐛 𝐱

This allows us to write dropout’s objective in a more convenient form.

 ℒ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝐌1, 𝐌2, b ≔
1

𝑀
 

𝑖∈𝑆

𝐸
 𝐖1,  𝐖2,𝐛 𝐱𝑖 , 𝐲𝑖 + 𝜆1 𝐌1

2 + 𝜆2 𝐌2
2 + 𝜆3‖𝐛‖2

𝐸
 𝐖1,  𝐖2,𝐛 𝐱, 𝐲 =

1

2
y − 𝐟

 𝐖1,  𝐖2,𝐛 𝐱
2

= −
1

𝜏
log 𝑝 𝐲|𝐟

 𝐖1,  𝐖2,𝐛(𝐱) + const

where 𝑝 𝐲|𝐟
 𝐖1,  𝐖2,𝐛(𝐱) = 𝒩 𝐲; 𝐟

 𝐖1,  𝐖2,𝐛(𝐱), 𝜏−1𝐼 with 𝜏−1 observation noise. 



ACE Team @ KAIST

Dropout network

20Gal, Yarin. "Uncertainty in deep learning." University of Cambridge (2016).

Recall that  𝛚 =  𝐖1,  𝐖2, 𝐛 and write

 𝛚𝒊 =  𝐖1
𝑖 ,  𝐖2

𝑖 , 𝐛𝒊 = diag  𝝐1
𝑖 𝐌1, diag  𝝐2

𝑖 𝐌2, 𝐛 =: 𝑔(𝜃,  𝛜𝑖)

with 𝜃 = 𝐌1, 𝐌2, 𝐛 ,  𝛜1
𝑖 ~ 𝑝 𝛜1 , and  𝛜2

𝑖 ~ 𝑝 𝛜2 for 1 ≤ 𝑖 ≤ 𝑁. Here 𝑝 𝛜𝑙 (𝑙 = 1,2) is a product of Bernoulli 

distributions with probabilities 1 − 𝑝𝑙, from which a realization would be a vector of zeros and ones.

We can get objective

 ℒ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝐌1, 𝐌2, 𝐛 = −
1

𝑀𝜏
 

𝑖∈𝑆

log 𝑝 𝐲|𝐟𝑔(𝜃, 𝛜𝑖)(𝐱) + 𝜆1 𝐌1
2 + 𝜆2 𝐌2

2 + 𝜆3‖𝐛‖2

with  𝛜𝑖 realizations of the random variable 𝛜.
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Compare two objectives, 

 ℒ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝐌1, 𝐌2, 𝐛 = −
1

𝑀𝜏
 

𝑖∈𝑆

log 𝑝 𝐲|𝐟𝑔(𝜃, 𝛜𝑖)(𝐱) + 𝜆1 𝐌1
2 + 𝜆2 𝐌2

2 + 𝜆3‖𝐛‖2

and

 ℒ𝑀𝐶(𝜃) = −
𝑁

𝑀
 

𝑖∈𝑆

log 𝑝 𝐲𝑖 𝑓𝑔 𝜃,𝛜 𝐱𝑖 + KL 𝑞𝜃(𝛚)‖𝑝(𝛚)

If we define the prior 𝑝(𝛚) s.t. the following holds:

𝜕

𝜕𝜃
KL(𝑞𝜃 𝛚 𝑝 𝛚 =

𝜕

𝜕𝜃
𝑁𝜏(𝜆1 𝐌1

2 + 𝜆2 𝐌2
2 + 𝜆3‖𝐛‖2)

(referred as the KL condition), we would have the following relation between the derivatives of 

two objectives

𝜕

𝜕𝜃
 ℒ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝜃 =

1

𝑁𝜏

𝜕

𝜕𝜃
 ℒ𝑀𝐶(𝜃)

with identical optimization procedure.
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Homoskedastic regression assumes constant noise 𝜎 for every input point 𝐱. 

On the other hand, we draw model weights from the approximate posterior  𝛚~𝑞(𝛚) to obtain a model output, this 

time composed of both predictive mean as well as predictive variance:

 𝐲𝑖 ,  σ𝑖
2 = 𝐟  𝛚 𝐱𝐢

Heteroskedastic regression, on the other hand, assumes that observation noise can vary with input 𝐱.

We fix a Gaussian likelihood to model our aleatoric uncertainty. This induces a minimization objective given 

labeled output points 𝐱 :

ℒ𝑁𝑁 𝜃 =
1

𝑁
 

𝑖=1

𝑁
1

2𝜎𝑖
2 𝐲𝑖 −  𝐲𝒊

2 +
1

2
log 𝜎𝑖

2

To summarize, the predictive uncertainty can be approximated using:

𝑉𝑎𝑟 𝑦 ≈
1

𝑇
 

𝑡=1

𝑇

 𝑦𝑡
2 −

1

𝑇
 

𝑡=1

𝑇

 𝑦𝑡

2

+
1

𝑇
 

𝑡=1

𝑇

 𝜎𝑡
2

Kendall, Alex, and Yarin Gal. 

"What uncertainties do we need in bayesian deep learning for computer vision?.“

Advances in neural information processing systems. 2017.

Epistemic uncertainty Aleatoric uncertainty
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Kendall, Alex, and Yarin Gal. 

"What uncertainties do we need in bayesian deep learning for computer vision?.“

Advances in neural information processing systems. 2017.

Low epistemic, Low aleatoric High epistemic, Low aleatoric

Low epistemic, High aleatoric High epistemic, High aleatoric

𝑉𝑎𝑟 𝑦 ≈
1

𝑇
 

𝑡=1

𝑇

 𝑦𝑡
2 −

1

𝑇
 

𝑡=1

𝑇

 𝑦𝑡

2

+
1

𝑇
 

𝑡=1

𝑇

 𝜎𝑡
2
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• What enables the Bayesian neural network to turn out predictive distributions? 

→ Stochasticity of model parameters (uncertainty over the model parameters)

• How do we approximate the posterior, which is intractable?

→ Variational inference, Reparameterization with i) Dropout as Bayesian approximation, ii) Monte-

Carlo estimator

• How do we measure the uncertainties of outcomes?

→ Variance of MC-sampled predictive mean (epistemic uncertainty) and mean of variance of MC-

sampled predictive distributions

• Is the aleatoric uncertainty reducible as the number of training samples increases?

→ In principle, no.

• Is the epistemic uncertainty reducible as the number of training samples increases?

→ In principle, yes. The epistemic uncertainty is often referred as ‘reducible uncertainty’.
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• How does dropout probability change with increasing the amount of training data?

→ The dropout probability will be reduced. 

When we train the model with few training data, the model regularization term ought to be large 

(ought to have small model capacity). In other words, the dropout probability ought to be large. 

→ On the other hand, when we increase the amount of data, the model becomes able to have large 

model capacity and the dropout probability will be reduced.

• How can it be possible?

→ 
1

𝑀
 𝑖∈𝑆

𝑀  Ω
𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 +

𝟏

𝑵
KL 𝑞𝜃(𝛚)‖𝑝 𝛚

• In other words, we have to find the individual optimal dropout probability of models trained with 

different amount of data.

→ Also, the dropout probability of each layer may be different.

→ Finding them manual grid-searching is impossible.

→ The solution what I have used is “Concrete dropout”.
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• When using the dropout neural networks (or any other stochastic regularization technique), a 

randomly drawn masked weight matrix corresponds to a function draw. 

• Therefore, the dropout probability, together with the weight configuration of the network, determine 

the magnitude of the epistemic uncertainty.

• For a fixed dropout probability 𝒑, high magnitude weights will result in higher output variance, i.e., 

higher epistemic uncertainty.

• With a fixed 𝑝, a model wanting to decrease its epistemic uncertainty will have to reduce its weight 

magnitude (and set the weights to be exactly zero to have zero epistemic uncertainty). Of course, 

this is impossible, as the model will not be able to explain the data well with zero weight matrices, 

therefore some balance between desired output variance and weight magnitude is achieved.

• Allowing the probability to change will let the model decrease its epistemic uncertainty by 

choosing smaller dropout probabilities.

• But if we wish to replace the grid-search with a gradient method, we need to define an optimization 

objective to optimize 𝑝 with respect to. 

• This is not trivial thing, as our aim is not to maximize model performance, but rather to obtain good 

epistemic uncertainty. What is a suitable objective for this?

Gal, Yarin, Jiri Hron, and Alex Kendall. "Concrete dropout." 

Advances in Neural Information Processing Systems. 2017.
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Recall that our minimization objective for the Dropout-based Bayesian neural network is

 ℒ𝑀𝐶 𝜃 =
1

𝑀
 

𝑖∈𝑆

𝑀

 
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 +
1

𝑁
KL 𝑞𝜃(𝛚)‖𝑝 𝛚 ,

where 𝜃 = 𝐌𝑙 , 𝑝𝑙 𝑙=1
𝐿 , 𝑞𝜃 𝛚 = Π𝑙𝑞𝐌𝑙

𝐖𝑙 and 𝑞𝐌𝑙
𝐖𝑙 = 𝐌𝑙 ⋅ diag Bernoulli 1 − 𝑝𝑙

𝐾𝑙 .

If the dropout probabilities 𝑝𝑙 𝑙=1
𝐿 also become learnable parameters, the regularization term which is 

optimized to satisfy the KL-condition is given by 

KL 𝑞𝜃(𝛚)‖𝑝 𝛚 =  

𝑙=1

𝐿

KL 𝑞𝐌𝑙
(𝐖𝑙)‖𝑝 𝐖𝑙

KL 𝑞𝐌𝑙
(𝐖𝑙)‖𝑝 𝐖𝑙 ∝

𝑙2 1 − 𝑝𝑙

2
𝐌 2 − 𝐾ℋ(𝑝𝑙)

with

ℋ 𝑝𝑙 = −𝑝𝑙 log 𝑝𝑙 − 1 − 𝑝𝑙 log(1 − 𝑝𝑙)

the entropy of a Bernoulli random variable with probability 𝑝𝑙.

Gal, Yarin, Jiri Hron, and Alex Kendall. "Concrete dropout." 

Advances in Neural Information Processing Systems. 2017.



ACE Team @ KAIST

Concrete Dropout

28

 ℒ𝑀𝐶 𝜃 =
1

𝑀
 

𝑖∈𝑆

𝑀

 
Ω

𝑞𝜃 𝛚 log 𝑝 𝐲𝒊 𝐟𝛚 𝐱𝑖 𝑑𝛚 +
1

𝑁
KL 𝑞𝜃(𝛚)‖𝑝 𝛚 ,

KL 𝑞𝜃(𝛚)‖𝑝 𝛚 =  

𝑙=1

𝐿

KL 𝑞𝐌𝑙
(𝐖𝑙)‖𝑝 𝐖𝑙

KL 𝑞𝐌𝑙
(𝐖𝑙)‖𝑝 𝐖𝑙 ∝

𝑙2 1 − 𝑝𝑙

2
𝐌 2 − 𝐾ℋ(𝑝𝑙)

with

ℋ 𝑝𝑙 = −𝑝𝑙 log 𝑝𝑙 − 1 − 𝑝𝑙 log(1 − 𝑝𝑙)

“The entropy term can be seen as a dropout regularization term. Minimizing the KL-divergence is 

equivalent to maximizing the entropy. This pushes the dropout probability towards 0.5 – the highest it 

can attain. The scailing of the regularization term means that large models will push the dropout 

probability towards 0.5 much more than smaller models, but as the amount of data 𝑁 increases the 

dropout probability will be pushed towards 0.”

Gal, Yarin, Jiri Hron, and Alex Kendall. "Concrete dropout." 

Advances in Neural Information Processing Systems. 2017.
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• Toy model) 𝑦 = 2𝑥 + 8 + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2)

• Varying

1) Number of training samples

2) Amount of random Gaussian noise 𝜎2

FC, 512

Concrete Dropout

FC, 512

Concrete Dropout

FC, 512

Concrete Dropout

FC, 512

𝒚𝒎𝒆𝒂𝒏

𝒙

𝒚𝒍𝒐𝒈𝒗𝒂𝒓
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1. The amount of training data increases

Maximum Likelihood 

Estimation (MLE)

Bayesian inference

Toy model) 𝑦 = 2𝑥 + 8 + 𝜖, 𝜖 ∼ 𝒩(0,1)
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1. The amount of training data increases



ACE Team @ KAIST

Toy model

32

2. The amount of additive noise 𝜖 ∼ 𝒩(0, 𝜎2) increases

Toy model) 𝑦 = 2𝑥 + 8 + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2)
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• Why did I use the Dropout network for Bayesian modeling?

→ Because… It is simple, easy to implement and cost-effective.

• Is the Dropout network good enough?

→ Cannot sure. There are two open questions for the Dropout network

1) Is our choice of prior (for example 𝑝 𝛚 = 𝒩(0, 𝜎2𝐼; 𝛚)) reasonable?

2) Is using dropout for the re-parameterization trick reasonable? 

It is related to the quality of approximated posterior
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Louizos, Christos, and Max Welling. "Multiplicative normalizing flows for 

variational bayesian neural networks." arXiv preprint arXiv:1703.01961 (2017).

Is the dropout network really a good 

posterior approximator?

Blue : true function

Green : predictive mean 
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• Why did I use the Dropout network for Bayesian modeling?

→ Because… It is simple, easy to implement and cost-effective.

• Is the Dropout network good enough?

→ Cannot sure. There are two open questions for the Dropout network

1) Is our choice of prior (for example 𝑝 𝛚 = 𝒩(0, 𝜎2𝐼; 𝛚)) reasonable?

2) Is using dropout for the re-parameterization trick reasonable? 

It is related to the quality of approximated posterior

• Other Bayesian modeling methods are introduced in the previous slide.
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1. Variational inference: 𝒑 𝛚 𝐗, 𝐘 ≈ 𝒒𝜽 𝛚
- Fully Factorized Gaussian (FFG), also referred as mean-field approximation

Blundell, Charles, et al. "Weight uncertainty in neural networks." arXiv preprint 

arXiv:1505.05424 (2015).

- Multiplicative Normalizing Flow (MNF) 

Louizos, Christos, and Max Welling. "Multiplicative normalizing flows for variational bayesian

neural networks." arXiv preprint arXiv:1703.01961 (2017).

- Dropout network

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing 

model uncertainty in deep learning." international conference on machine learning. 2016.

- … 

2. Laplace approximation: pointwise estimation assisted with posterior curvature.

3. Markov chain Monte Carlo (MCMC): running Markov chains for Monte Carlo estimate 

of the posterior.

Today’s topic
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• Why did I use the Dropout network for Bayesian modeling?

→ Because… It is simple, easy to implement and cost-effective.

• Is the Dropout network good enough?

→ Cannot sure. There are two open questions for the Dropout network

1) Is our choice of prior (for example 𝑝 𝛚 = 𝒩(0, 𝜎2𝐼; 𝛚)) reasonable?

2) Is using dropout for the re-parameterization trick reasonable? 

It is related to the quality of approximated posterior

• Other Bayesian modeling techniques able to adapt is introduced in the previous slide.

• Applications of Bayesian deep learning

→ Uncertainty-aware deep learning, for example, uncertainty-aware exploration and exploitation 

in reinforcement learning

→ Ideal Bayesian neural network can perfectly defense to the adversarial attack

→ …


