Reinforcement Learning
Opensource to Baselines

Member

o loT AIAE! JHgt & 2

o1 2

Cl&, ROS, Hl
stes 220

o,
ES|

25t st
=
S

ot=

AN=zclold 2=

Index

e Reinforcement Learning

e Policy based Reinforcement Learning

e Value based Reinforcement Learning

e Famous open source for Reinforcement Learning
e Why?

e Requirements

e Supported algorithms

e To do List

e How to use

e License

Reinforcement Learning

select rect(pl,

StarCraft |l Binary

StarCraft Il API

resources
available actions
build queue

Non-spatial
features

p2) or build supply(p3) or ..

SC2LE

Screen
features

Minimap
features

-1/0/+1

Reward

Policy base Reinforcement Learning

Policy base Reinforcement Learning

nn(s,a)

Policy base Reinforcement Learning

nn(s,a)

Probability to select action(a) at state(s)

Policy base Reinforcement Learning

J(0)=) d"(s) Y mols,a)R;

Policy base Reinforcement Learning

J(0)=) d"(s) Y mols,a)R;

State Distribution

Policy base Reinforcement Learning

J(0)= Zd”"(s)

State Distribution

a

Policy

Ty(S,a)

RS

a

Policy base Reinforcement Learning

J(0)= Zd”"(s)

State Distribution

a

Policy

7y(s,a)

RS

a

Reward

Policy base Reinforcement Learning

MaximizelJ(0)

Policy base Reinforcement Learning

J(0)=) d"(s) Y mols,a)R;

Policy base Reinforcement Learning

J(0)="Y d"(s) Y |zs.a)R;

Policy base Reinforcement Learning

J(0) =E, [r]

sCS aCA

Policy base Reinforcement Learning

J(6) =E, [r] d(logx) 1
=Y d(s) Y a(sa)R; dx x
r i d(logf(x)) _ f'(x)
v f(x)
Vol(0) =N,) d(s) Y alsaR,
sCS aCA
=Y d(s) Y NV alsa)R;
sCS aCA

. Zd(s) Zven(s, a)(log(n(s,a)R,))

Policy base Reinforcement Learning

J(0) =E, [r]

. Zd(s) Zven(s, a)(log(n(s,a)R,))

d(logx) B 1
dx x

d(logf(x)) _ f(x)

dx - f(x)

:Em}[V()ZOg]T()(S5 a)RiI]

Policy base Reinforcement Learning

EJT(,[VQZOg mo(s,a)R,]

Policy base Reinforcement Learning

function REINFORCE
Initialise ¢ arbitrarily
for each episode {s;.a;.r,....s7_1,ar_1.r7} ~ ™ do
fort=1to T —1do
H+— 0+ aVy IOg TTH(St. at)vt
end for
end for
return ¢/
end function

Policy base Reinforcement Learning

e Policy Gradient

e Advantage Actor Critic

e Natural Policy Gradient

e Trust Region Policy Gradient

e Proximal Policy Gradient

Policy Gradient

e Policy Gradient Methods for Reinforcement Learning with Function Approximation

o Policy can be trained by|iterable method

o Policy can be trained by|Policy Gradient Policy Gradient Methods for
Reinforcement Learning with Function
Method Approximation
e Policy Gradient FUCBTLT Lot Rascorch, 160 Pock Avonse Frocham pack, NJ 07083~
o Optimal Policy can be obtained by Gradient Ascend Ahabendi
M eth o) d Function approximation is essential to reinforcement learning, but

the standard approach of approximating a value function and deter-
mining a policy from it has so far proven theoretically intractable.
In this paper we explore an alternative approach in which the policy
is explicitly represented by its own function approximator, indepen-
® Ite ra ble MethOd dent of the value function, and is updated according to the gradient
of expected reward with respect to the policy parameters. Williams’s
. . . . REINFORCE method and actor—critic methods are examples of this
©) Opt'mal POl |Cy Can be Obtalned by |terab|e methOd approach. Our main new result is to show that the gradient can
be written in a form suitable for estimation from experience aided
by an approximate action-value or advantage function. Using this
I 1 result, we prove for the first time that a version of policy iteration
I I ke dee p |ea rni ng methOd with arbitrary differentiable function approximation is convergent to
a locally optimal policy.

Policy Gradient

R,

J(0)= Zd”"(s) Zﬂ(,(s,a,

Advantage Actor Critic

e Why advantage is needed?

O

©)

O

Reduce variance, without changing expectation
A(s,a)=0(s,a)-V(s)

O(s,a)=E[R,, +ymax,Q(s..,a)ls, =s,a,=a]
Q(S’ a): Rr+1 +}/V(St+1)

N J(0)=E[\/ jlogn(s,a)A(s,a)]

(R +yV(s,,,)-V(s,))]

Natural Policy Gradient

e The parameter update can not guarantee

the performance improvement of the actual function A Natural Policy Gradient

Sham Kakade
Gatsby Computational Neuroscience Unit
17 Queen Square, London, UK WCIN 3AR
http:/ /www.gatsby.ucl.ac.uk

sham@gatshy.ucl.ac.uk
(a)*Vanilla® policy gradien (b) Natural policy gradients
0.5 <=1 -mm % 0.5]
ﬁj' 75 3 1 o I~ a?‘? g % A
= 041 S > _“ i G £ ‘: N q © 0.4 > We provide a natural gradient method that represents the steepest
= 0.3 \ A t_, ! 458 ~L N\ N = 0.3 descent direction based on the underlying structure of the param-
- Setny .80 T x| ‘: £ N "N - R eter space. Although gradient methods cannot make large changes
‘é N2 r-'} ‘ % - & } - / '; . f‘é 0.2 in the values of the parameters, we show that the natural gradi-
: - 1 : 5 ™~ - ent is moving toward choosing a greedy optimal action rather than
2 0.1 \ L Mo B ¢ L = 0.1 just a better action. These greedy optimal actions are those that
% ' ‘ : g 2o ‘, &' : would be chosen under one improvement step of policy iteration
(&1 0.0t Ll L 1.4 = 0.0 - with approximate, compatible value functions, as defined by Sut-
-2 =15 =10 05 00 -2 =15 -10 0S5 040 ton et al. [9]. We then show drastic performance improvements in

! : ' : simple MDPs and in the more challenging MDP of Tetris.
Controller gain 6 =k Controller gain 8=k s A Nty o

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (Cl I S‘) Trust Region Policy Optimization
m()ax ESN/)()OId a~q (|) Q()old(a)
John Schulman
Sergey Levine
S. L. ESN/)emd [DKL (ﬂ()(,ld(’) || 7o (- |V))] =0 e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Trust Region Policy Optimization

e Trust Region

JOSCHU@EECS.BERKELEY.EDU
SLEVINE @EECS.BERKELEY.EDU
PCMORITZ @EECS.BERKELEY.EDU
JORDAN@CS.BERKELEY.EDU

Ty (a I S‘) Trust Region Policy Optimization
m()ax ESN/)HOM a~q (|) Q()()ld(a)
John Schulman
Sergey Levine
5.1 ESNPemd [DKL (ﬂ()(,]d(’ |$) 1| (- |V))] <o e
Pieter Abbeel

PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

Proximal Policy Optimization

e Trust Region

mo(als)
m(fiX ESN/)(,Old,(wq (|) Q()(ld()]

S.t Egep, |DxL (7m,,C18) |l m(:15))] <6

Proximal Policy Optimization

max

Trust Region

my(als)
ESN/)(’old’aNq (|) Q()old(a)

Esp,,, [DKL (ﬂ()(,]d('|S) | ﬂ()('”))]

0

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

max
0

S. t

LCHP(9) = K, | min(

Trust Region

E

SNPH()ld 9=4

mo(als)
g(als)

Q()old (S 2 a)

Esp,,, [DKL (ﬂ()(,]d('|S) | ﬂ()('”))] <o

Tt(O)Ata Clip('rt(g)’ 1-— €, 1+ 6)"4t)

~

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

max
0

S. t

LCHP(9) = K, | min(

Trust Region

E

SNPH()ld 9=4

mo(als)
g(als)

Q()old (S 2 a)

Esp,,, [DKL (ﬂ()(,]d('|S) | ﬂ()('”))] <o

Tt(O)Ata Clip('rt(g)’ 1-— €, 1+ 6)"4t)

~

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Proximal Policy Optimization

e Trust Region

LOHP(9) = By |min(ry(0) Ay, clip(re(6),1 — €, 1 + €) Ay)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

Value base Reinforcement Learning

Value base Reinforcement Learning

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Value base Reinforcement Learning

e Playing Atari with Deep Reinforcement Learning(NIPS 2013)

e Human-level control through deep reinforcement learning(Nature 2015)
e Deep Reinforcement Learning with Double Q-Learning

e Dueling Network Architectures for Deep Reinforcement Learning

e Prioritized Experience Replay

Value base Reinforcement Learning

@
k Distance : 2 min

Dispatch Time : 5 min

Value base Reinforcement Learning

@
k Dista 2 min

‘ Dispatch Time : 5 min

Value base Reinforcement Learning

0.35 -
0.30 -
0.25 -
' 0.20 -
10.15 -
0.10

0.05 A

0.00 T T | T T |

3 min 8 min

Value base Reinforcement Learning

e A Distributional perspective on Reinforcement Learning(2017)
e Distributional Reinforcement Learning with Quantile Regression(2017)

e Implicit Quantile Networks for Distributional Reinforcement Learning(2018)

Value base Reinforcement Learning

0.5

=
2
£

0.0

Probability

B .

Probability
Probability

. M.

0.0———

Return

Value base Reinforcement Learning

0.5

z
2
o
£

0.0

Probability

. B .

Probability
Probability

. M.

0.0———

Return

Distributional Reinforcement Learning
with Quantile Regrssion

e Histogram cannot meet condition

JP(TﬂZh 7‘”Z2) < ’YJP(Zla Z2)

e \Wasserstein Distance

Wp(U,Y) = (/01 By (W) — Fy

Area j f (x)dk=P(-0£X2a)

fylx)

(¢}
PDF CDF

Distributional Reinforcement Learning
with Quantile Regrssion

Implicit Quantile Network
for Distributional Reinforcement Learning

Implicit Quantile Network
for Distributional Reinforcement Learning

Random
Sampling

Value base Reinforcement Learning

Famous open source for Reinforcement Learning

64

Famous open source for Reinforcement Learning

e Deepminds

65

Famous open source for Reinforcement Learning

e Deepminds

e Open Al

66

Famous open source for Reinforcement Learning

e Deepminds

e Open Al

67

Famous open source for Reinforcement Learning

e Deepminds

e Open Al

ﬂ _'
~7 “ a

ALPHAGDO

68

Famous open source for Reinforcement Learning

e Deepminds

Open Al

L ‘;_m]

ALPHAGDO

69

Famous open source for Reinforcement Learning

e Deepminds

Open Al

70

Famous open source for Reinforcement Learning

e Deepminds

e Open Al

71

Famous open source for Reinforcement Learning

e Deepminds

o Dopamine W
m Value based Reinforcement Learning opensource baseline
m https://github.com/google/dopamine N

e Open Al

72

Famous open source for Reinforcement Learning

e Deepminds

A

o Dopamine

m Value based Reinforcement Learning open source baseline

m https://github.com/google/dopamine
e Open Al

o Baselines
m Policy based Reinforcement Learning open source baseline

m https://github.com/openai/baselines

73

Why?

74

Why?

e Hard to Install

75

Why?

Hard to Install

(@)

(@)

baselines

dopamine

mp4py, mujoco...

easy

running insta
running build

You appear to be missing MuJoCo.
This package only provides python bindings, the library must
Please

https://github.con/openat /mujoco-py#install-nujoco
which can be downloaded from the website

https: //www. robott.us/index. html

Traceback (nost recent call last)

We expected to find the file here:

/home/ckg/.mujoco/mipro15e

be installed separately.

follow the instructions on the READNE to install MuJoCo

File "<string>", line 1, in <modu
Une &4, tn odute>

Fiie /mp/p«p {nstall-1jsuawin/nujoco-py/se
d

 Eeqiienenta. fiial* aqutrininrs iev vt
ges/setuptools/__tnit__.py", line 145, in setup

L5 5] Fini] necor o3y e rans L o epu L1 o
return distutils.core.setup(**attrs)
File */home/ckg/anaconda3/envs/tensorflow-cpu/Lib/python3.
dist. run_connands()
* /home /ckg/anaconda3/envs/tensor Flow-cpu/Lib/python
command(cmd)

File
sel!)
g/anaconda3/envs/tensor flow-cpu/Lib/python3.

3.
/home /ckg/anaconda3/envs/tensor flow-cpu/Lib/python3.6/site-packages/setuptools/comnand/install.py”, line 61, in run

rn orig.install.run(self
hone ck/ snaconda3 envs/tensor flow-cpu/ Lib/python3
f.run_conmand(*build")
/hame/(kg/anamnda}/envs/lcnscrﬂaw—(pu/lﬂb/py!han}
self.distribution.run_conmand(conmand)
File "/h me/(kg/anmnaa,/env tensorflow-cpu/Lib/python3
cnd_ob3. run()
ELTeirolplp: rista L1 puawln/mulocs tov/astup oy iiine
inport mujoco_py # noga: forc
File "/tmp/pip-install- mumn/mu;mo py/mujoco_py/_f
from nujoco_py.butlder import cynj, ignore_mujoco_w:
File */tap/ptp- nstall-1suawin/mujoco- py/mujoc
ocol

3.6/distutils/dist.py", line 955, in

.6/distutils/cnd.py",

e aLiopok
6/distutils/core.py”, line 148, in setup
run_comnands
6/distutils/dist.py", line run_command
6/distutils/connand/install.py”, line 545, in run
ltne 313, tn run_conmand
6/distutils/dist.py”, line 574, n run_comnand

28, in run

nas

_py/builder.py”, line 502,

all-1jsuawin/nijoco-py/mujoco_py/utils.py”, line 93, in discover_mujoco

u Sppear o be nissing MuJoco.
This package only provides python bindings,
Please follow the instructions

https://github.con/openat/mujoco-py#install-mujoco
which can be downloaded from the website

. robott.us/index. html

We expected to find the file here:

: /home/ckg/ .nujoco/njpro15e

the library must be installed separately.

on the README to install MuJoCo

76

Why?

Hard to Install

(@)

(@)

baselines

dopamine

mp4py, mujoco...

easy

running insta
running build

You appear to be missing MuJoCo.
This package only provides python bindings, the library must
Please

https://github.con/openat /mujoco-py#install-nujoco
which can be downloaded from the website

https: //www. robott.us/index. html

Traceback (nost recent call last)

We expected to find the file here:

/home/ckg/.mujoco/mipro15e

be installed separately.

follow the instructions on the READNE to install MuJoCo

File "<string>", line 1, in <modu
Une &4, tn odute>

Fiie /mp/p«p {nstall-1jsuawin/nujoco-py/se
d

 Eeqiienenta. fiial* aqutrininrs iev vt
ges/setuptools/__tnit__.py", line 145, in setup

L5 5] Fini] necor o3y e rans L o epu L1 o
return distutils.core.setup(**attrs)
File */home/ckg/anaconda3/envs/tensorflow-cpu/Lib/python3.
dist. run_connands()
* /home /ckg/anaconda3/envs/tensor Flow-cpu/Lib/python
command(cmd)

File
sel!)
g/anaconda3/envs/tensor flow-cpu/Lib/python3.

3.
/home /ckg/anaconda3/envs/tensor flow-cpu/Lib/python3.6/site-packages/setuptools/comnand/install.py”, line 61, in run

rn orig.install.run(self
hone ck/ snaconda3 envs/tensor flow-cpu/ Lib/python3
f.run_conmand(*build")
/hame/(kg/anamnda}/envs/lcnscrﬂaw—(pu/lﬂb/py!han}
self.distribution.run_conmand(conmand)
File "/h me/(kg/anmnaa,/env tensorflow-cpu/Lib/python3
cnd_ob3. run()
ELTeirolplp: rista L1 puawln/mulocs tov/astup oy iiine
inport mujoco_py # noga: forc
File "/tmp/pip-install- mumn/mu;mo py/mujoco_py/_f
from nujoco_py.butlder import cynj, ignore_mujoco_w:
File */tap/ptp- nstall-1suawin/mujoco- py/mujoc
ocol

3.6/distutils/dist.py", line 955, in

.6/distutils/cnd.py",

e aLiopok
6/distutils/core.py”, line 148, in setup
run_comnands
6/distutils/dist.py", line run_command
6/distutils/connand/install.py”, line 545, in run
ltne 313, tn run_conmand
6/distutils/dist.py”, line 574, n run_comnand

28, in run

nas

_py/builder.py”, line 502,

all-1jsuawin/nijoco-py/mujoco_py/utils.py”, line 93, in discover_mujoco

u Sppear o be nissing MuJoco.
This package only provides python bindings,
Please follow the instructions

https://github.con/openat/mujoco-py#install-mujoco
which can be downloaded from the website

. robott.us/index. html

We expected to find the file here:

: /home/ckg/ .nujoco/njpro15e

the library must be installed separately.

on the README to install MuJoCo

77

Why?

e Hard to Install
o baselines : mp4py, mujoco...
o dopamine : easy

e Hard to use to your environment

78

Why?

e Hard to Install

O

o

baselines : mp4py, mujoco...

dopamine : easy

e Hard to use to your environment

(@]

O

o

manipulate the api

https://qithub.com/gooqgle/dopamine

https://github.com/openai/baselines

79

https://github.com/google/dopamine
https://github.com/openai/baselines

Why?

e Hard to Install

O

o

baselines : mp4py, mujoco...

dopamine : easy

e Hard to use to your environment

o manipulate the api

o https://github.com/google/dopamine

o https://qithub.com/openai/baselines
e Korean

80

https://github.com/google/dopamine
https://github.com/openai/baselines

Requirements

81

Requirements

e Hard to Install

82

Requirements

e [Easy to Install

83

Requirements

e [Easy to Install
Installation

cpu version
pip install tensorflow-rl[tf-cpul
gpu version

pip install tensorflow-rl[tf-gpu]

84

Requirements

e [Easy to Install

e Hard to use to your environment

85

Requirements

e [Easy to Install

e [Easy to use to your environment

86

Requirements

e [Easy to Install
e [Easy to use to your environment

o Provide many tutorial code(discrete, continuous action)

87

Requirements

e [Easy to Install
e [Easy to use to your environment
o Provide many tutorial code(discrete, continuous action)

o Keep the flow of other reinforcement learning code

88

Requirements

e [Easy to Install
e [Easy to use to your environment
o Provide many tutorial code(discrete, continuous action)
o Keep the flow of other reinforcement learning code
env = gym.make('Breakout-v2"')
i in range(episode):

state = env.reset()
done =

done:
action = inference(state)
next_state, reward, done, _ = env.step(action)
state = next_state
train_model(data)

89

Requirements

e [Easy to Install
e [Easy to use to your environment

e Korean

90

Supported algorithms

91

Supported algorithms

e Vanilla Policy Gradient
e Advantage Actor Critic
e Proximal Policy Optimization

e Deep Deterministic Policy Gradient

92

Supported algorithms

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)

93

To do List

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)

94

To do List

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)

e Applicate LSTM to Vanilla Policy Gradient, Advantage Actor Critic, Proximal Policy Optimization
e Actor Critic Experience Replay
e Soft actor critic
e Value based Reinforcement Learning
o DQN, Double DQN, Deuling DQN to Rainbow
o Distributional RL

95

How to use

96

How to use

n age
om age
g
t

rom mod

env = gy

nt.utils
nt.discrete.seperat

ensorflow as tf

y np
el import MLPActor, MLPCritic

m.make ('CartPole

state_size, output_size

sess = t
actor

sess.run

last_sco

tota
stat
done
scor

f.Session()

LPActor("' r', state_size, output_size)
MLPCritic('crit , state_size)
PPO(sess, output_size, Nc , actor, critic)
(tf obal_variables_initializer())

re =0

tate, total_next_state, total_reward, total_done
e = env.reset()

e =0
done:
last_score > 300:
env.render()
action = agent.get_action([state])
action = action[@]

next_state, step, done, _ = env.step(action)
score step
reward = @

done:
score == 500:
reward = 1

reward = -1

total_state.append(state)
total_next_state.append(next_state)
total_done.append(done)
total_action.append(action)
total_reward.append(reward)

state = next_state

total_action

, i, 1, 1, i

total_state = np.stack(total_state)
total_next_state = np.stack(total_next_state)
total_action = np.stack(total_action)
total_reward = np.stack(total_reward)
total_done = np.stack(total_done)

value, next_value = agent.get_value(total_state, total_next_state)
adv, target = get_gaes(total_reward, total_done, value, next_value, agent.gamma, agent.lamda,

agent.train_model(total_state, total_action, target, adv)
print(score)
last_score = score

97

License

98

License

Free

99

We are hiring

100

Support us in any form

https://github.com/RLOpensource/tensorflow RL/blob/master/model.py

101

https://github.com/RLOpensource/tensorflow_RL/blob/master/model.py

