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Probability to select action(a) at state(s)
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function REINFORCE
Initialise ¢ arbitrarily
for each episode {s;.a;.r,....s7_1,ar_1.r7} ~ ™ do
fort=1to T —1do
H+— 0+ aVy IOg TTH(St. at)vt
end for
end for
return ¢/
end function
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Policy Gradient

e Policy Gradient Methods for Reinforcement Learning with Function Approximation

o Policy can be trained by|iterable method

o Policy can be trained by|Policy Gradient Policy Gradient Methods for
Reinforcement Learning with Function
Method Approximation
e Policy Gradient FUCBTLT Lot Rascorch, 160 Pock Avonse Frocham pack, NJ 07083~
o Optimal Policy can be obtained by Gradient Ascend Ahabendi
M eth o) d Function approximation is essential to reinforcement learning, but

the standard approach of approximating a value function and deter-
mining a policy from it has so far proven theoretically intractable.
In this paper we explore an alternative approach in which the policy
is explicitly represented by its own function approximator, indepen-
® Ite ra ble MethOd dent of the value function, and is updated according to the gradient
of expected reward with respect to the policy parameters. Williams’s
. . . . REINFORCE method and actor—critic methods are examples of this
©) Opt'mal POl |Cy Can be Obtalned by |terab|e methOd approach. Our main new result is to show that the gradient can
be written in a form suitable for estimation from experience aided
by an approximate action-value or advantage function. Using this
I 1 result, we prove for the first time that a version of policy iteration
I I ke dee p |ea rni ng methOd with arbitrary differentiable function approximation is convergent to
a locally optimal policy.
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Advantage Actor Critic

e Why advantage is needed?

O

©)

O

Reduce variance, without changing expectation
A(s,a)=0(s,a)-V(s)

O(s,a)=E[R,, +ymax,Q(s..,a)ls, =s,a,=a]
Q(S’ a): Rr+1 +}/V(St+1)

N J(0)=E[\/ jlogn(s,a)A(s,a)]
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Natural Policy Gradient

e The parameter update can not guarantee

the performance improvement of the actual function A Natural Policy Gradient

Sham Kakade
Gatsby Computational Neuroscience Unit
17 Queen Square, London, UK WCIN 3AR
http:/ /www.gatsby.ucl.ac.uk

sham@gatshy.ucl.ac.uk
(a)*Vanilla® policy gradien (b) Natural policy gradients
0.5 <=1 -mm % 0.5 ]
ﬁj' 75 3 1 o I~ a?‘? g % A
= 041 S > _“ i G £ ‘: N q © 0.4 > We provide a natural gradient method that represents the steepest
= 0.3 \ A t_, ! 458 ~L N\ N = 0.3 descent direction based on the underlying structure of the param-
- Setny .80 T x| ‘: £ N "N - R eter space. Although gradient methods cannot make large changes
‘é N2 r-'} ‘ % - & } - / '; . f‘é 0.2 in the values of the parameters, we show that the natural gradi-
: - 1 : 5 ™~ - ent is moving toward choosing a greedy optimal action rather than
2 0.1 \ L Mo B ¢ L = 0.1 just a better action. These greedy optimal actions are those that
% ' ‘ : g 2o ‘, &' : would be chosen under one improvement step of policy iteration
(&1 0.0t Ll L 1.4 = 0.0 - with approximate, compatible value functions, as defined by Sut-
-2 =15 =10 05 00 -2 =15 -10 0S5 040 ton et al. [9]. We then show drastic performance improvements in

! : ' : simple MDPs and in the more challenging MDP of Tetris.
Controller gain 6 =k Controller gain 8=k s A Nty o
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Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al,, 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.
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(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.
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Value base Reinforcement Learning

e Playing Atari with Deep Reinforcement Learning(NIPS 2013)

e Human-level control through deep reinforcement learning(Nature 2015)
e Deep Reinforcement Learning with Double Q-Learning

e Dueling Network Architectures for Deep Reinforcement Learning

e Prioritized Experience Replay
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Value base Reinforcement Learning

e A Distributional perspective on Reinforcement Learning(2017)
e Distributional Reinforcement Learning with Quantile Regression(2017)

e Implicit Quantile Networks for Distributional Reinforcement Learning(2018)
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Distributional Reinforcement Learning
with Quantile Regrssion

e Histogram cannot meet condition
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Distributional Reinforcement Learning
with Quantile Regrssion




Implicit Quantile Network
for Distributional Reinforcement Learning
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Famous open source for Reinforcement Learning

e Deepminds

o Dopamine W
m Value based Reinforcement Learning opensource baseline
m https://github.com/google/dopamine N

e Open Al
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Famous open source for Reinforcement Learning

e Deepminds

A

o Dopamine

m Value based Reinforcement Learning open source baseline

m https://github.com/google/dopamine
e Open Al

o Baselines
m Policy based Reinforcement Learning open source baseline

m https://github.com/openai/baselines
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Hard to Install

(@)

(@)

baselines

dopamine

mp4py, mujoco...

easy

running insta
running build

You appear to be missing MuJoCo.
This package only provides python bindings, the library must
Please

https://github.con/openat /mujoco-py#install-nujoco
which can be downloaded from the website

https: //www. robott.us/index. html

Traceback (nost recent call last)

We expected to find the file here:

/home/ckg/.mujoco/mipro15e

be installed separately.

follow the instructions on the READNE to install MuJoCo

File "<string>", line 1, in <modu
Une &4, tn odute>

Fiie /mp/p«p {nstall-1jsuawin/nujoco-py/se
d

 Eeqiienenta. fiial* aqutrininrs iev vt
ges/setuptools/__tnit__.py", line 145, in setup

L5 5] Fini] necor o3y e rans L o epu L1 o
return distutils.core.setup(**attrs)
File */home/ckg/anaconda3/envs/tensorflow-cpu/Lib/python3.
dist. run_connands()
* /home /ckg/anaconda3/envs/tensor Flow-cpu/Lib/python
command(cmd)

File
sel! )
g/anaconda3/envs/tensor flow-cpu/Lib/python3.

3.
/home /ckg/anaconda3/envs/tensor flow-cpu/Lib/python3.6/site-packages/setuptools/comnand/install.py”, line 61, in run

rn orig.install.run(self
hone ck/ snaconda3 envs/tensor flow-cpu/ Lib/python3
f.run_conmand(*build")
/hame/(kg/anamnda}/envs/lcnscrﬂaw—(pu/lﬂb/py!han}
self.distribution.run_conmand(conmand)
File "/h me/(kg/anmnaa,/env tensorflow-cpu/Lib/python3
cnd_ob3. run()
ELTeirolplp: rista L1 puawln/mulocs tov/astup oy iiine
inport mujoco_py # noga: forc
File "/tmp/pip-install- mumn/mu;mo py/mujoco_py/_f
from nujoco_py.butlder import cynj, ignore_mujoco_w:
File */tap/ptp- nstall-1suawin/mujoco- py/mujoc
ocol

3.6/distutils/dist.py", line 955, in

.6/distutils/cnd.py",

e aLiopok
6/distutils/core.py”, line 148, in setup
run_comnands
6/distutils/dist.py", line run_command
6/distutils/connand/install.py”, line 545, in run
ltne 313, tn run_conmand
6/distutils/dist.py”, line 574, n run_comnand

28, in run

nas

_py/builder.py”, line 502,

all-1jsuawin/nijoco-py/mujoco_py/utils.py”, line 93, in discover_mujoco

u Sppear o be nissing MuJoco.
This package only provides python bindings,
Please follow the instructions

https://github.con/openat/mujoco-py#install-mujoco
which can be downloaded from the website

. robott.us/index. html

We expected to find the file here:

: /home/ckg/ .nujoco/njpro15e

the library must be installed separately.

on the README to install MuJoCo
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e Hard to Install

O

o

baselines : mp4py, mujoco...

dopamine : easy

e Hard to use to your environment

(@]

O

o

manipulate the api

https://qithub.com/gooqgle/dopamine

https://github.com/openai/baselines
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Why?

e Hard to Install

O

o

baselines : mp4py, mujoco...

dopamine : easy

e Hard to use to your environment

o manipulate the api

o https://github.com/google/dopamine

o https://qithub.com/openai/baselines
e Korean
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e [Easy to Install
Installation

cpu version
pip install tensorflow-rl[tf-cpul
gpu version

pip install tensorflow-rl[tf-gpu]
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Requirements

e [Easy to Install
e [Easy to use to your environment
o  Provide many tutorial code(discrete, continuous action)
o Keep the flow of other reinforcement learning code
env = gym.make( 'Breakout-v2"')
i in range(episode):

state = env.reset()
done =

done:
action = inference(state)
next_state, reward, done, _ = env.step(action)
state = next_state
train_model(data)
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Requirements

e [Easy to Install
e [Easy to use to your environment

e Korean
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Supported algorithms

e Vanilla Policy Gradient
e Advantage Actor Critic
e Proximal Policy Optimization

e Deep Deterministic Policy Gradient
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Supported algorithms

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)
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To do List

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)
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To do List

e Vanilla Policy Gradient(Discrete Action)
e Advantage Actor Critic(Discrete Action)
e Proximal Policy Optimization(Discrete, Continuous Action)

e Deep Deterministic Policy Gradient(Discrete, Continuous Action)

e Applicate LSTM to Vanilla Policy Gradient, Advantage Actor Critic, Proximal Policy Optimization
e Actor Critic Experience Replay
e  Soft actor critic
e Value based Reinforcement Learning
o DQN, Double DQN, Deuling DQN to Rainbow
o Distributional RL

95



How to use
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How to use

n age
om age
g
t

rom mod

env = gy

nt.utils
nt.discrete.seperat

ensorflow as tf

y np
el import MLPActor, MLPCritic

m.make ( 'CartPole

state_size, output_size

sess = t
actor

sess.run

last_sco

tota
stat
done
scor

f.Session()

LPActor("' r', state_size, output_size)
MLPCritic('crit , state_size)
PPO(sess, output_size, Nc , actor, critic)
(tf obal_variables_initializer())

re =0

tate, total_next_state, total_reward, total_done
e = env.reset()

e =0
done:
last_score > 300:
env.render()
action = agent.get_action([state])
action = action[@]

next_state, step, done, _ = env.step(action)
score step
reward = @

done:
score == 500:
reward = 1

reward = -1

total_state.append(state)
total_next_state.append(next_state)
total_done.append(done)
total_action.append(action)
total_reward.append(reward)

state = next_state

total_action

, i, 1, 1, i

total_state = np.stack(total_state)
total_next_state = np.stack(total_next_state)
total_action = np.stack(total_action)
total_reward = np.stack(total_reward)
total_done = np.stack(total_done)

value, next_value = agent.get_value(total_state, total_next_state)
adv, target = get_gaes(total_reward, total_done, value, next_value, agent.gamma, agent.lamda,

agent.train_model(total_state, total_action, target, adv)
print(score)
last_score = score
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License

98



License

Free
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We are hiring
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Support us in any form

https://github.com/RLOpensource/tensorflow RL/blob/master/model.py
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https://github.com/RLOpensource/tensorflow_RL/blob/master/model.py

