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Caution

* This material with English.
 Many typings and mathematics.

 Need Background Knowledge about Time Series and Optimization.
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Caution

This material with English.
Many typings and mathematics.
Need Background Knowledge about Time Series and Optimization.

But if you concentrate on the presentation and follow me,
you can understand and know | am a liar.
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What Machine Learning Do ?

* |In general, machine learning estimates probability distribution.
- Generative model learns to estimate joint probability P(X) or P(X, Y)
- Discriminative model learns to estimate conditional probability P(Y|X)
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P(X . . :
X) Data (Observations): Machine Learning

X1, X 2, , X_N Model
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What Machine Learning Do ?

* |In general, machine learning estimates probability distribution.
- Generative model learns to estimate joint probability P(X) or P(X, Y)
- Discriminative model learns to estimate conditional probability P(Y|X)

Data (Observations):

/’ X_1, X_Z, ...... , X_N

YT1Y2 e YN

P(Y[X)
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What Machine Learning Do ?

* |In general, machine learning estimates probability distribution.
- Generative model learns to estimate joint probability P(X) or P(X, Y)
- Discriminative model learns to estimate conditional probability P(Y|X)

Data (Observations):
X X2, “X_N Machine Learning
YTY2 - Y_N \" [oYe[=]

P(Y[X)
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What Machine Learning Do ?

* In general, machine learning estimates probability distribution.
- Generative model learns to estimate joint probability P(X) or P(X, Y)
- Discriminative model learns to estimate conditional probability P(Y|X)

Data (Observations):

P(Y|X
(vYiX) X X2, , X_N Machine Learning
YTY2 - Y_N Model
Dog
Given test data X
Cat
Rabbit
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Time Series Data is all around us
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Because

NO TIME NO LIFE : Our life is defined by “TIME”

Everything in our life is connected with time changes.
- Does a state change or not ?

- How it changes ?
- Which characteristics in the state according to time change?



Time Series
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Time Series

 Time Series:
An ordered sequence of values of a variable at equally spaced time intervals.
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Time Series

 Time Series:
An ordered sequence of values of a variable at equally spaced time intervals.

 Time Series Modeling:
Model a stochastic process with autoregressive manners.
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Time Series

 Time Series:
An ordered sequence of values of a variable at equally spaced time intervals.

 Time Series Modeling:
Model a stochastic process with autoregressive manners.

* In the end, time series modeling can be to find
probability distribution of a variable at time t,
conditioned on past time t-1, t-2, ...... .
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Time Series Modeling Intuition

_l—>
t=0 =12 time

\4
< >

T+1
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Time Series Modeling Intuition
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Time Series Modeling Intuition
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Time Series Modeling Intuition

—>
t=0 =12 time

T+1 | |
< m’ » Samplei :{Yi,YiH)---’YHT}
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Time Series Modeling Intuition

t=0 =12 time

T+1 o
Distribution of

< m’ » Samplei :{Yi ’ Yi+]) sy Yi+T} Ordered (T+1) Series
observation

(realization)
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Time Series Modeling Intuition
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Time Series Modeling Intuition

t=0 t=19 time
T+1 S
4 R Distribution of
Ordered (T+1) Series

sample 2
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Time Series Modeling Intuition

t=0 =12 time

>

T+1 Distribution of

Ordered (T+1) Series

sample 1

(Machine Learning)

sample 2

Model
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Time Series Modeling Intuition

t=0 =12 time

Distribution of
Ordered (T+1) Series

sample 2 (Machine Learning)

Model

Estimate the true distribution *
based on training data
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l \I RMI \ (Whittle 1951; Box&dJenkins, 1971)

 ARMA (AutoRegressive Moving Average) is a typical model for time series.

 ARMA(p,q): a generative linear model that combines AR(p) and MA(q)

p q
VE, Y = Z a;Yi—; + € + Z bj€t—;
i=1 =1
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Modeling Process

\'4

Mode
|dentification

NS

Parameter
—stimation

U

Diagnostic
Checking

S

Model
Selection

Determine suitable p
and g of ARMA(p,q)

—stimate coefficlents
of ARMA model

Check If the residuals
are white noises

Choose an adequate
model from alternatives
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Modeling Process
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Stationarity vs. Non-Stationarity

o Stationary Time Series
- 7|2t (Period)0]| £t 80| L|O|E12] =tE =X 7t ¥iotX| 52 A|AE H|O|E

same distribution
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o Stationary Time Series
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Stationarity vs. Non-Stationarity

 Nonstationary Time Series
- 7|2t (Period)0]| L2} H|O|E{2| 2l F3£7t Hot= A[AIE H|O|E

_ I <

(Zty .-y Zt4m) (Ztsks-- s Ltrm+k)

Fz, ...z, (T1ys@n) % Fz, . 7 . (T1,...,ZTn)
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Stationarity vs. Non-Stationarity

 Nonstationary Time Series
- 7|2t (Period)0]| L2} H|O|E{2| 2l F3£7t Hot= A[AIE H|O|E
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Stationarity vs. Non-Stationarity

 Nonstationary Time Series
- 7|2t (Period)0]| L2} H|O|E{2| 2l F3£7t Hot= A[AIE H|O|E

* Jypical Examples:
- Trends
- Seasonality

- Changes of Variance

DNILIANIC 1IN /ICDCITY NE COOIENICE AND TECL 10 N
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Solutions for Nonstationarity

Differencing
Data Transformation
Seasonal-Trend Decomposition

(Deep) Neural Networks



Solutions for Nonstationarity
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Solutions for Nonstationarity

Differencing

Data Transformation

Seasonal-Trend Decon

(Deep) Neural Network
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Solutions for Nonstationarity

Differencing

Data Transformation

Seasonal-Trend Decomposition

(Deep) Neural Networks
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random seasonal
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Solutions for Nonstationarity

e Differencing

e Data Transformation © 0 © 0 0 0 06 06 0 0 0 0 O © i/@ Output
@

>0 0 0 0O 0O 0O O O O O O O O O () Hidenlayer
O O O O 0O O O O O O O O O /( CA/ () Hidden Layer
o O O O O O O O O O O O / (/ [A/ () Hidden Layer

J/( (/ / ©  Input

 Seasonal-Trend Decomposition

 (Deep) Neural Networks
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RobustSTL: A Robust Seasonal-
Trend Decomposition Algorithm for
Long Time Series

Qingsong Wen, Jingkun Gao, Xiamin Song, Liang Sun, Huan Xu, Shenghuo Zhu
Alibaba
AAAI 2019 paper



Summary

» Decomposing complex time series into trend, seasonality, and
remainder components is an important task to facilitate time series
anomaly detection and forecasting.
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Summary

» Decomposing complex time series into trend, seasonality, and
remainder components is an important task to facilitate time series

anomaly detection and forecasting.

 Limitation of previous researches
1) Ablility to handle seasonality fluctuation and shift, and abrupt changes in

trend and reminder
2) robustness of data with anomalies
3) applicability on time series with long seasonality period.
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Introduction

ST Decomposition can reveal the underlying insights of a time series and
can be useful in further analysis such as AD and forecasting.
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than the unusually high values during a busy period.
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Introduction

ST Decomposition can reveal the underlying insights of a time series and
can be useful in further analysis such as AD and forecasting.

e Without decomposition, it would be missed as its value is still much lower
than the unusually high values during a busy period.

e Spike & dip anomalies correspond to abrupt change of remainder and the
change of mean anomaly corresponds to abrupt change of trend.
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Introduction

ST Decomposition can reveal the underlying insights of a time series and
can be useful in further analysis such as AD and forecasting.

Without decomposition, it would be missed as its value is still much lower
than the unusually high values during a busy period.

Spike & dip anomalies correspond to abrupt change of remainder and the
change of mean anomaly corresponds to abrupt change of trend.

Previous approaches still suffer from less flexibility when seasonality
period is long and high noises are observed. Or not feasible on large-size
data.
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ST decomposition on Real-world

e 3 characteristics of real-world time series

1) Seasonality fluctuation and shift are quite common in real-world time
series.

2) Most algorithms can’t handle the abrupt change of trend and remainder.

3) Most methods are not applicable to time series with long seasonality
period and some of them can only handle quarterly or monthly data.
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Previous approaches Summary

Table 1: Comparison of ditferent time series decomposition
algorithms (Y: Yes / N: No)

Algorithm Outlier Seasonality Long  Abrupt
Robustness  Shift Period Trend Change
Classical N N N N
ARIMA/SEATS | N N N N
STL N N Y N
TBATS N N N Y
STR Y Y N N
SSA N N N N
Our RobustSTL | Y Y Y Y
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Robust STL Model Overview

e \WWhat we want to do

Decomposition of additive time series
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Robust STL Model Overview

* A value on time t decomposes into (trend, seasonality, and remainder)

- Seasonality: related pattern which changes slowly or even status
constant over time.

- Trend: change faster than seasonality.
- Remainder: it consists of anomalies(spikes and dips) and white noise.

yt:Tt+St+Tt, tzl,Q,N (1)
It = Q¢ + Ny, (2)
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RobustSTL algorithm
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RobustSTL algorithm

 S1. Denoise time series by applying bilateral filtering
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RobustSTL algorithm

 S1. Denoise time series by applying bilateral filtering

o S2. Extract trend robustly by solving a LAD regression with sparse
regularizations
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RobustSTL algorithm

S1. Denoise time series by applying bilateral filtering

S2. Extract trend robustly by solving a LAD regression with sparse
regularizations

S3. Calculate the seasonality component by applying a non-local
seasonal filtering to overcome seasonality fluctuation and shift
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RobustSTL algorithm

S1. Denoise time series by applying bilateral filtering

S2. Extract trend robustly by solving a LAD regression with sparse
regularizations

S3. Calculate the seasonality component by applying a non-local
seasonal filtering to overcome seasonality fluctuation and shift

S4. Adjust extracted components (repeat S2 and S3)
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S1. Noise Removal

In real-world applications when time series are collected,
the observations may be contaminated by carious types of errors and noises.

Noise removal is indispensable for trend and seasonality decomposition, robustly.
Many approaches: low-pass filtering, moving/median average, Gaussian filter.

The noise removal process “should not” destruct some underlying
structuring in trend and seasonal components.
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.
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S1. Noise Removal
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.

t-H --- -1 t t+1 --- t+H
———————————————————————————————————————————————
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.

t-H --- -1 t t+1 --- t+H
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.

y£:Zw§yj, J=t,tx1l,--- t+ H (3)
jed
where J denotes the filter window with length 2H + 1, and
the filter weights are given by two Gaussian functions as

] Ly’ lyj—gtlz
wt = Ze 290 ¢ 203 (4)
J - )
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S1. Noise Removal

» Bilateral filtering: cadge-preserving filter in image processing.
Use neighbors with similar values to smooth the time series.
The abrupt change of trend and spike and dip can be fully preserved.

y£:Zw§yj, J=t,tx1l,--- t+ H (3)
jed
where J denotes the filter window with length 2H + 1, and
the filter weights are given by two Gaussian functions as

] Ly’ lyj—gtlz
wt = Ze 290 ¢ 203 (4)
J - )

where the n; = y; — vy, is the filtered noise. POSTEDLH



S2. Trend Extraction

* The joint learning of trend and seasonal components is challenging.

 As the seasonality component is assumed to change slowly,

we first perform seasonal difference operation for the despised signal to
mitigate the seasonal effects.



S2. Trend Extraction

 Then, the seasonal difference is dominated by trend difference because
we assume seasonality and reminder difference are small.

9 = V1Y, =y — Yi_r
— VTTt -+ VTSt -+ vTTg

1T—1
Y Vr_i+ (Vs + Vory), (7)
1=0
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S2. Trend Extraction

* Thus, the objective function of trend extraction is to recover the first order
difference of trend signal: LAD (robust to outliers)

N 1T —1 N N
Y g—Y Vroi Ay VRl Y V3R], (8)
t=T+1 i=0 t=2 t=3

Trend change unit Smoothness
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S2. Trend Extraction

* Thus, the objective function of trend extraction is to recover the first order
difference of trend signal: LAD (robust to outliers)

N T—1 N N
Z \gt—z VTt—z'H)\lZ\V7t|+)\22|vzﬁ|, (3)
t=T—+1 i=0 =2 =3

Trend change unit Smoothness

 Second term assumes that the trend difference usually changes slowly but
can also exhibit some abrupt level shifts.

* Third term assumes that the trends are smooth and piecewise linear such

| y
f "{/E.’ /;'/J‘ .’; VG / fv"\a’,/ @ 'f /\7 Sl] ‘l ii 5( Vr“:." / '\f’(' 5‘{ AND .:" (f ( /’ ,”,‘"J‘“’Q )| oG }



S2. Trend Extraction

e Objective with matrix form.

g — MV 7|1 + M||VT||1 + A2||DVT|[1, (9)

g = (9741, 9742, - ,gn]t, MandDare (N —T) x (N —1)and (N —2) x (N —1)
Toeplitz matrix, respectively, with the following forms
VT = [VTQ, V13, ’VTN]T, T ones
——
1 -1 i 1 —1
| | 1 -1
M = D=
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S2. Trend Extraction

 The optimization problem is equivalent to below.

To facilitate the process of solving the above optimization

problem, we further formulate the three £;-norms in Eq. (9)
as a single /1-norm, 1.e.,
|PVT —ql1, (12)

where the matrix P and vector q are

M(N—Tyx(N=1)
P= | Mn-nxw-1 |,a=
)\QD(N—Z)X(N—l)

—g(N—T) x 1
Oen—3)x1]|
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S2. Trend Extraction

 The optimization problem is equivalent to below.

- r

. 0 VT

min
1 \Y%
i o T (13)
P —I||VT q

st |_p _1l |+ | = —q

Yy, =y, — T, =8 +11+71), (15)
r?’f’:at—k(nt—ﬁt)—k(n—ﬁ) (16)
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(Reminder) RobustSTL algorithm

 S1. Denoise time series by applying bilateral filtering

e S2. Extract trend robustly by solving a LAD regression with sparse
regularizations

« S3. Calculate the seasonality component by applying a non-local
seasonal filtering to overcome seasonality fluctuation and shift

o S4. Adjust extracted components (repeat S2 and S3)
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S3. Seasonality Extraction

e After de-trending, it can be considered as a contaminated seasonality.

* To consider seasonality shift, non-local seasonal filtering is proposed
and also consider K neighborhoods centered at seasonal parts.

* In this way, the points with most similar seasonality are automatically
found and the seasonality shift problem is solved.

t-kT-h === t-kT === t-kT+h t-T-h === t-T === t-T+h t-h -t --- t+h
—_—mn——



S3. Seasonality Extraction

e After de-trending, it can be considered as a contaminated seasonality.

* To consider seasonality shift, non-local seasonal filtering is proposed
and also consider K neighborhoods centered at seasonal parts.

* In this way, the points with most similar seasonality are automatically
found and the seasonality shift problem is solved.

t-kT-h === t-kT--- t-kT+h t-T-h === t-T ==+ t-T+h t-h ===t --- t+h

o
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S3. Seasonality Extraction

 Non-local Seasonal Filtering

= ). Wy (17)
(t",5) €

where the wf o) and () are defined as

;o y | think the notation
. 1 7=t | i —Y has to be t, not t prime.

wh, = —e 255 e 267 Anditsright!  (]8)
(t".3) —

Q={{" It =t—kxT,j=t+h)}
k=12--- . K: h=0,1,--- . H

/7 |2
t,|
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S3. Seasonality Extraction

 Non-local Seasonal Filtering

= ). Wy (17)
(t",5) €

where the wf o) and () are defined as

, 2 10112
t 1 j—t | [y —y, |

’LU(t/ 7) — —€ 256% € 283 (18)
’ Z

Q={{" It =t—kxT,j=t+h)}
k=12--- . K: h=0,1,--- . H
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S3. Seasonality Extraction

 Robustness of non-local seasonal filtering to outliers.

t' =t—T It | St
4y
7, At ST
Yy <«» .
s 4 :
¢ S left shift At of season
_ H
(a) Outlier robustness (b) Season shift adaptation

Figure 1: Robust and adaptive properties of the non-local
seasonal filtering (red curve denotes the extracted seasonal



S4. Final Adjustment

 To make seasonal-trend decomposition unigue,
RobustSTL makes the sum of seasonality components become zero,
using mean shift.

T|N/T| . - .
St = S¢ — T1,

A /1] A A A
't =Ty +N¢ O T¢ =Yg — S¢ — T¢.

A at——nt——(st—§t)——(ﬁ—7A'1), t =1
L= A+ +— Ty T (St — §t) T (Tt _7-t)7 t Z 2
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Algorithm Summary

Algorithm 1 RobustSTL Algorithm Summary
Input: y,, parameter configurations.
Olltpllt: 7A't, §t, 72t

Step 1: Denoise input signal using bilateral filter

Cli—tl? [y —yt|?
t 1 252 282 /] t,,
wj — 26 d € ¢ y Yp — Eje]wjyj

Step 2: Obtain relative trend from ¢; sparse model
VT = arg miny,||PV7 — ql|1(see Eq. (8), (9), (12))

(0, t =1
> L, VFE, t>2

v =y — 7
Step 3: Obtain season using non-local seasonal filtering

~r
Ty = <

2
L
t 1 252 252
w,,,  — —€ d € 7
(t',7) 2

St =2 (1,j)e0 w’(ﬁt,,j)y}’
Step 4: Adjust trend and season

) T|N/T| ~

= TL]\%/TJ thLl/ '3

A . ~Ir' A A . ~ A A . A e
Tt =Ty +T1, St =S¢ —T1, Tt =Yt — St — Ty
Step 5: Repeat Steps 1-4 for 7; until convergence POSTERCH




Results - Synthetic Data

10
— IJ —— raw data - —— raw data
) L] — trend 0- e — L...,"'“‘J:r—“’ ] — trend
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| , , , | | | -101__ . . . . . il |
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
—— season 2.5 —— season
—2.5-
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
5-
—— remainder — remainder
O-
T T T T T T T —5- L Ll T 1 T T T T
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(a) RobustSTL
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Results - Synthetic Data

10 1

VYU U UUUUUUUUUL | e W

R l —— raw data —— raw data
: b"‘“‘J:JZI'J — L’““ — trend 0 - — tﬁ:&L — trend
= WHPTI : L—v-Mi--.....J
| | | | | .' | -101 | | | | | Dli | |
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
—— Season 2.5 — Season

—2.5-
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
5_
—— remainder —— remainder
o [
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
(a) RobustSTL (b) Standard STL
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Results - Real-world Data 1

7.50 - —— raw data
— trend
7.25— v -
7.00 -
20 40 60 80 100 120
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(a) RobustSTL
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Results - Real-world Data 2

1.00- 1.00 1.00
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Implementations

e codes: https://www.github.com/lL.eeDoYup/RobustSTL

RobustSTL: A Robust Seasonal-Trend Decomposition
Algorithm for Long Time Series (AAAI 2019)

This repository contains python (3.5.2) implementation of RobustSTL (paper) .

Decomposing complex time series into trend, seasonality, and remainder components is an important task to facilitate time
series anomaly detection and forecasting.

RobustSTL extract trend using LAD loss with sparse regularization and non-local seasonal filtering.

Compared to previous approaches (such as traditional STL), RobustSTL has advantages on

1. Ability to handle seasonality fluctuation and shift, and abrupt change in trend and reminder
2. robustness of data with anomalies

3. applicability on time series with long seasonality period.

Requirments & Run

First, install some required libraries using pip.

pip3 install -r requirments.txt
python3 main.py

Sample Results

We generate a synthetic sample (sample_generator.py) and decompose it into trend, seasonality,and remainder . In
run_example. ipynb , | attach the example codes to use RobustSTL and the outputs.

POSTEROH
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https://www.github.com/LeeDoYup/RobustSTL

Some Open Questions

Real Time applications ?
Neural Networks ?
Higher frequency time series ?

Does really the algorithm work well? (Some problems yet..)
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Thank you.
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