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• Supervised learning infers a function from labeled training data

𝑝 𝜃 X, Y ∝ 𝑝 Y X, 𝜃 𝑝(𝜃)

• Unsupervised learning infers a function without labeled training data

𝑝 𝜃 X ∝ 𝑝 X 𝜃 𝑝(𝜃)
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• Supervised learning infers a function from labeled training data

𝑝 𝜃 X, Y ∝ 𝑝 Y X, 𝜃 𝑝(𝜃)

• Unsupervised learning infers a function without labeled training data

𝑝 𝜃 X ∝ 𝑝 X 𝜃 𝑝(𝜃)

• Generative methods try to model the class-conditional density 𝑝(𝑥|𝑦) by some unsupervised learning 

procedure. A predictive density can then be inferred by Bayes’ theorem:

𝑝 𝑦 𝑥 =
𝑝 𝑥 𝑦 𝑝(𝑦)

 𝒴
𝑝 𝑥 𝑦 𝑝 𝑦 𝑑𝑦

• Discriminative methods concentrate on estimating 𝑝(𝑦|𝑥).



ACE Team @ KAIST

Preliminaries

6

• Supervised learning infers a function from labeled training data

𝑝 𝜃 X, Y ∝ 𝑝 Y X, 𝜃 𝑝(𝜃)

• Unsupervised learning infers a function without labeled training data

𝑝 𝜃 X ∝ 𝑝 X 𝜃 𝑝(𝜃)

• Semi-supervised learning infers a function with both labeled and unlabeled training data

Supervised learning Semi-supervised learning

https://en.wikipedia.org/wiki/Semi-supervised_learning

https://en.wikipedia.org/wiki/Semi-supervised_learning
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Goodfellow, Ian. "NIPS 2016 tutorial: Generative adversarial 

networks." arXiv preprint arXiv:1701.00160 (2016).

Recommend to see http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
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Goodfellow, Ian, et al. "Generative adversarial nets." 

Advances in neural information processing systems. 2014.

𝑧 ∼ 𝑝𝑧(𝑧)

𝐺(𝑧)

𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷(𝑥)

Learning objective: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) , 𝑉 𝐷, 𝐺 = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷 𝑥 + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))]
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Advances in neural information processing systems. 2014.

𝐺(𝑧)

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷(𝑥)

𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Learning objective: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) , 𝑉 𝐷, 𝐺 = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷 𝑥 + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))]

 For real images, 𝐷(𝑥) tries to be near 1.

 For fake images, 𝐷 tries to make 𝐷 𝐺 𝑧 near 0 and 𝐺 tries to make 𝐷 𝐺 𝑧 near 1.

→ so-called mini-max two player game
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Advances in neural information processing systems. 2014.

𝐺(𝑧)

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷(𝑥)

𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

For G fixed, the optimal discriminator 𝐷 is 𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝑔(𝑥)
, since,

𝑉 𝐺, 𝐷 =  
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 +  
𝑧

𝑝𝑧 𝑧 log 1 − 𝐷 𝐺 𝑧 𝑑𝑧

=  
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) + 𝑝𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

has its minimum in 0,1 at 
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝑔(𝑥)
.
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Goodfellow, Ian, et al. "Generative adversarial nets." 

Advances in neural information processing systems. 2014.

Learning objective: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) , 𝑉 𝐷, 𝐺 = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷 𝑥 + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))]

The mini-max game in the above learning objective can now be reformulated as

𝐶 𝐺 = max
𝐷

𝑉(𝐺, 𝐷) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎
log𝐷𝐺

∗ (𝑥) + 𝔼𝑥∼𝑝𝑔
log 1 − 𝐷𝐺

∗ 𝑥

= 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎
log

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝑥∼𝑝𝑔

log
𝑝𝑔 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Theorem) The global minimum of the virtual training criterion 𝐶 𝐺 is achieved if and only if 𝑝𝑔 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥 . At  

that point, 𝐶 𝐺 achieves the value − log4. 

Proof)

𝐶 𝐺 = KL 𝑝𝑑𝑎𝑡𝑎‖𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔 + KL 𝑝𝑔‖𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔 + log4 − log 4

= KL 𝑝𝑑𝑎𝑡𝑎 (𝑝𝑑𝑎𝑡𝑎+𝑝𝑔 /2 + KL 𝑝𝑔‖(𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔)/2 − log 4

= JS(𝑝𝑑𝑎𝑡𝑎 𝑝𝑔 − log 4

JS(𝑝𝑑𝑎𝑡𝑎 𝑝𝑔 is always non-negative and is zero when 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔. Therefore, 𝐶 𝐺 has its minimum value − log 4

when 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔. 
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Goodfellow, Ian, et al. "Generative adversarial nets." 

Advances in neural information processing systems. 2014.

Results

Visualization of samples from the model. Rightmost 

column shows the nearest training example of the 

neighboring sample, in order to demsonstrate that model 

has not memorized the training set. 

(…)

Unlike most other visualizations of deep generative 

models, these images show actual samples from the 

model distributions, not conditional means given samples 

of hidden units. Moreover, these samples are 

uncorrelated because the sampling process does not 

depend on Markov chain mixing.
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Goodfellow, Ian, et al. "Generative adversarial nets." 

Advances in neural information processing systems. 2014.

• “In practice, adversarial nets represent a limited family of 𝒑𝒈 distributions via the function 𝑮(𝒛; 𝜽𝒈), and 

we optimize 𝜽𝒈 rather than 𝒑𝒈 itself, so the proofs do not apply. 

→ Implicit density model (recommend to see how VAE infers the posterior 𝑝 𝑧 𝑥 and to compare GAN and VAE)

• However, the excellent performance of multi-layer perceptrons in practice suggests that they are a reasonable 

model to use despite their lack of theoretical guarantees.”

Recommend to see more detailed review of GAN

→ https://www.slideshare.net/ckmarkohchang/generative-adversarial-networks

https://www.slideshare.net/ckmarkohchang/generative-adversarial-networks
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16Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015).

Encoder & Generator Decoder

Given prior Discriminator

𝑞 𝐳 =  𝐱∈𝐗
𝑞 𝐳 𝐱 𝑝𝑑 𝐱 𝑑𝐱

: aggregated posterior

𝑝 𝐱 𝐳 : decoding distribution

𝑞 𝐳 𝐱 : encoding distribution

𝑝(𝐳) : prior distribution

𝑝𝑑(𝐱) : data distribution
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Learning objective: 

• In the reconstruction phase, the autoencoder updates the encoder and the decoder to minimize the 

reconstruction error of inputs.

ℒ𝑟𝑒𝑐𝑜𝑛𝑠𝑡 =
1

𝒟𝑑𝑎𝑡𝑎
𝐱 −  𝐱 2

Encoder Decoder
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Learning objective: 

• In the regularization phase, the adversarial network first updates its discriminative network to tell 

apart the true samples (generated using the prior) from the generated samples (the hidden 

codes computed by the autoencoder). The adversarial network then updates its generator (which 

is also the encoder of the autoencoder) to confuse the discriminative network.

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) , 𝑉 𝐷, 𝐺 = 𝔼𝐱∼𝑝𝑑𝑎𝑡𝑎(𝐱) log𝐷 𝐱 + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(z))]

Generator

Given prior

Discriminator𝑝(𝐳) : prior distribution
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Learning objective: 

1) In the reconstruction phase, the autoencoder updates the encoder and the decoder to minimize the 

reconstruction error of inputs.

ℒ𝑟𝑒𝑐𝑜𝑛𝑠𝑡 = 𝔼𝑝𝑑 𝐱 𝔼𝑞(𝐳|𝐱) − log𝑝(𝐱|𝐳)

2) In the regularization phase, the adversarial network first updates its discriminative network to tell 

apart the true samples (generated using the prior) from the generated samples (the hidden 

codes computed by the autoencoder). The adversarial network then updates its generator (which 

is also the encoder of the autoencoder) to confuse the discriminative network.

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) , 𝑉 𝐷, 𝐺 = 𝔼𝐱∼𝑝𝑑𝑎𝑡𝑎(𝐱) log𝐷 𝐱 + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(z))]

→ The adversarial network guides the posterior distribution 𝑞(𝐳) to match the prior distribution 𝑝(𝐳)
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Comparison to variational autoencoder (Kingma et. al., 2014): 

Learning objective of VAE: 

ℒ = 𝔼𝑝𝑑 𝐱 𝔼𝑞(𝐳|𝐱) − log 𝑝(𝐱|𝐳) + 𝔼𝑝𝑑(𝐱) KL 𝑞(𝐳|𝐱)‖𝑝(𝐳)

ℒ𝑟𝑒𝑐𝑜𝑛𝑠𝑡 KL-regularization

* ELBO : Evidence Lower BOund

This term is replaced by adversarial loss in AAE

Pros and Cons of using AAE instead of VAE

Pros)

• Do not need to set the functional form of the prior distribution and reparameterization trick

• We just need to be able to sample from the prior to induce the latent distribution to match the prior

Cons)

• Challenging to train due to common difficulties inherent in GANs

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf
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Comparison to variational autoencoder (Kingma et. al., 2014): 

The hidden code z of the hold-out images for an AAE/VAE fit to a 2D Gaussian

Gaps in the latent space; not well-packed

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf
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Comparison to variational autoencoder (Kingma et. al., 2014): 

The hidden code z of the hold-out images for an AAE/VAE fit to a mixture of 10 2D Gaussian

VAE emphasizes the mode of distribution; 

has systematic differences from the prior

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf

https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf
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Incorporating Label Information in the Adversarial Regularization

“In the scenarios where data is labeled, we can incorporate the label information in the adversarial training 

stage to better shape the distribution of the hidden code. In this section, we describe how to leverage partial 

or complete label information to regularize the latent representation of the autoencoder more heavily.”

• Add one-hot vector to associate the label with a mode of the distribution. 

• The one-hot vector acts as switch that selects the corresponding decision boundary of the discriminative 

network given the class label.

• This one-hot vector has an extra class for unlabeled examples. → semi-supervised approach
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Incorporating Label Information in the Adversarial Regularization

“In the scenarios where data is labeled, we can incorporate the label information in the adversarial training 

stage to better shape the distribution of the hidden code. In this section, we describe how to leverage partial 

or complete label information to regularize the latent representation of the autoencoder more heavily.”
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Supervised Adversarial Autoencoders

Disentangling the label information from the hidden code by providing the one-hot vector to the generative 

model. The hidden code in this case learns to represent the style of the image.

One-hot vector of the label class

Image style information
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Supervised Adversarial Autoencoders
Varying label class
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Semi-supervised Adversarial Autoencoders
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Semi-supervised Adversarial Autoencoders

Both of the adversarial networks as well as the autoencoder are 

trained jointly with SGD in three phases –

1. In the reconstruction phase, the autoencoder updates the 

encoder 𝑞(𝐲, 𝐳|𝐱) and the decoder to minimize the reconstruction 

error of the inputs on an unlabeled mini-batch.

2. In the regularization phase, each of the adversarial networks 

first updates their discriminative network to tell apart the true 

samples from the generated samples (the hidden codes 

computed by the autoencoder). 

The adversarial networks then update their generator to confuse 

their discriminative networks.

3. In the semi-supervised classification phase, the autoencoder

updates 𝑞(𝐲|𝐱) to minimize the cross-entropy cost on a labled

mini-batch.
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Semi-supervised Adversarial Autoencoders
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Kim, Yoon, et al. "Adversarially regularized autoencoders for generating 

discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 

Learning latent variable models of discrete structures, such as text sequences or discretized images, 

remains a challenging problem

→ Generative models based on VAEs or GANs can easily degenerate into a unconditional language model.

→ Policy gradient methods or re-parameterization trick(e.g. Gumbel-Softmax distribution) are used to overcome.

The authors extend the AAE to discrete sequences/structures.

→ Similar to the AAE, our model learns an encoder from an input space to an adversarially regularized 

continuous latent space.

→ However, unlike the AAE which utilizes a fixed prior, the authors instead learn a parameterized prior as a 

GAN.

→ Like sequence VAEs, the model does not require using policy gradients or continuous relaxations.

→ Like GANs, the model provides flexibility in learning a prior through a parameterized generator.
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Kim, Yoon, et al. "Adversarially regularized autoencoders for generating 

discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 

Learning objective:

𝑊 ℙ𝑄, ℙ𝐳 :

Wasserstein distance between two distributions ℙ𝑄 and ℙ𝐳.

* Mathematics in WGAN paper:

https://www.slideshare.net/ssuser7e10e4/wasserstein-gan-i

reconst. loss of AE adversarial regularization to 

make two distributions similar

https://www.slideshare.net/ssuser7e10e4/wasserstein-gan-i
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Kim, Yoon, et al. "Adversarially regularized autoencoders for generating 

discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 

Extension: Unaligned Transfer

Learning objective:

To learn to remove attribute 

distinctions from the prior

ℒ𝑐𝑙𝑎𝑠𝑠 𝜙, 𝑢 : the loss of a classifier 𝑝𝑢(𝑦|𝐳) from latent variable to labels

This requires two more update steps:

1. Training the classifier

ℒ = −
1

𝑚
 

𝑖=1

𝑚

log 𝑝𝑢 𝑦(𝑖)|𝐳(𝑖)

2. Adversarially training the encoder to this classifier.

ℒ = −
1

𝑚
 

𝑖=1

𝑚

log 𝑝𝑢 1 − 𝑦(𝑖)|𝐳(𝑖)
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Kim, Yoon, et al. "Adversarially regularized autoencoders for generating 

discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 

Extension: Unaligned Transfer

• Sentiment transfer 

Top) Positive → Negative

Bottom) Negative → Positive • Topic transfer
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36
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 

harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
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Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 

harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

Fast adversarial examples

• In many problems, the precision of an individual input feature is limited. For example, digital images often 

use only 8 bits per pixel so they discard all information below 1/256(=1/28) of the dynamic range.

• Because the precision of the features is limited, it is not rational for the classifier to respond differently to an 

input 𝒙 than to an adversarial input  𝒙 = 𝒙 + 𝜼 if every element of the perturbation 𝜼 is smaller than the 

precision of the features.

• Formally, for problems with well-separated classes, we expect the classifier to assign the same class to 𝒙
and  𝒙 so long as 𝜼 ∞ < 𝜖, where 𝜖 is small enough to be discarded by the sensor or data storage 

apparatus associated with our problem.

* 𝜼 ∞ = max 𝜼𝒊 𝒊=𝟏,…,𝒏
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Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 

harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

Fast adversarial examples

• Consider the dot product between a weight vector 𝝎 and an adversarial example  𝒙:

𝝎𝑻 𝒙 = 𝝎𝑻𝒙 + 𝝎𝑻𝜼.

• The adversarial perturbation causes the activation to grow by 𝝎𝑻𝜼. We can maximize this increase subject to 

the max norm constraint on 𝜼 by assigning 𝜼 = sign 𝝎 . If 𝝎 has 𝑛 dimensions and the average magnitude 

of an element of the weight vector is 𝑚, then the activation will grow by 𝜖𝑚𝑛.

• Since 𝜼 ∞ does not grow with the dimensionality of the problem but the change in activation caused by 

perturbation by 𝜼 can grow linearly with 𝑛, then for high dimensional problems, we can make many 

infinitesimal changes to the input that add up to one large change to the output. 

• This explanation shows that a simple linear model can have adversarial examples if its input has sufficient 

dimensionality. Previous explanations for adversarial examples invoked hypothesized properties of neural 

networks, such as their supposed highly non-linear nature. 

• Our hypothesis based on linearity is simpler, and can also explain why softmax regression is vulnerable to 

adversarial examples.
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Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 

harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

긴팔원숭이선충류

Fast adversarial examples Note that it is not random
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Fast adversarial examples

https://adversarial-ml-tutorial.org/introduction/

argmax
𝛿∈𝐷𝑒𝑙𝑡𝑎

ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦 − ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

Targeted attacks:

making NNs to predict pig as airliner

https://adversarial-ml-tutorial.org/introduction/
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Fast adversarial examples

https://adversarial-ml-tutorial.org/introduction/

argmax
𝛿∈𝐷𝑒𝑙𝑡𝑎

ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦 − ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

Targeted attacks:

making NNs to predict pig as airliner
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Training with an adversarial objective function based on the fast gradient sign method 

was an effective regularizer:

https://adversarial-ml-tutorial.org/introduction/

Training adversarially robust classifiers

 ℒ 𝜃, 𝑥, 𝑦 = 𝛼 ⋅ ℒ 𝜃, 𝑥, 𝑦 + 1 − 𝛼 ⋅ ℒ 𝜃, 𝑥 + 𝜖sign 𝛻𝑥ℒ 𝜃, 𝑥, 𝑦

Typical objective (e.g. NLL) Adversarial example as a regularizer

 ℒ 𝜃 = argmin
𝜃

 𝑅𝑎𝑑𝑣 ℎ𝜃 , 𝐷𝑡𝑟𝑎𝑖𝑛 = argmin
𝜃

1

𝒟𝑡𝑟𝑎𝑖𝑛
 

𝑥,𝑦 ∈𝒟𝑡𝑟𝑎𝑖𝑛

argmax
𝛿∈Δ(𝑥)

ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 

harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

→ Mini-max or robust optimization formulation of adversarial learning

1. For each 𝑥, 𝑦 ∈ 𝒟𝑡𝑟𝑎𝑖𝑛, solve the inner maximization problem:

𝛿∗ 𝑥 = argmax
𝛿∈Δ(𝑥)

ℒ ℎ𝜃 𝑥 + 𝛿 , 𝑦

2. Compute the gradient of the empirical adversarial risk, and update 𝜃

𝜃 ≔ 𝜃 −
1

𝒟𝑡𝑟𝑎𝑖𝑛
 

𝑥,𝑦 ∈𝒟𝑡𝑟𝑎𝑖𝑛

𝛻𝜃ℒ ℎ𝜃 𝑥 + 𝛿∗(𝑥) , 𝑦

https://adversarial-ml-tutorial.org/introduction/
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Miyato, Takeru, et al. "Distributional smoothing with virtual 

adversarial training." arXiv preprint arXiv:1507.00677 (2015).

“We propose local distributional smoothness (LDS), a new notion of smoothness for statistical 

model that can be used as a regularization term to promote the smoothness of the model 

distribution. We named the LDS based regularization as virtual adversarial training (VAT).”
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Local Distributional Smoothness (LDS)

: the negative of the sensitivity of the model distribution 𝑝(𝑦|𝑥, 𝜃) with respect to the perturbation of 𝑥, 

measured in the sense of KL divergence

LDS ≔ KL 𝑝(𝑦|𝑥, 𝜃)‖𝑝 𝑦 𝑥 + 𝑟, 𝜃

Relation to adversarial training (Goodfellow et. al., 2015)

: Goodfellow et. al. penalized the model’s sensitivity with respect to the perturbation in the adversarial 

direction. 

 ℒ 𝜃, 𝑥, 𝑦 = 𝛼 ⋅ ℒ 𝜃, 𝑥, 𝑦 + 1 − 𝛼 ⋅ ℒ 𝜃, 𝑥 + 𝜖sign 𝛻𝑥ℒ 𝜃, 𝑥, 𝑦

On the other hand, using the language of adversarial training, LDS at each point is measuring the 

robustness of the model against the perturbation in ‘virtual’ adversarial direction. We therefore refer to 

our regularization method as virtual adversarial training (VAT).

Because LDS does not require the label information, VAT is also applicable to semi-supervised learning.

perburtation to 𝑥

Typical objective (e.g. NLL) Adversarial regularizer
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Miyato, Takeru, et al. "Distributional smoothing with virtual 

adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Formalization of LDS

• Suppose the input space ℛ𝐼 and output space 𝑄, and a training samples 

𝐷 = 𝑥 𝑛 , 𝑦(𝑛) | 𝑥 𝑛 ∈ ℛ𝐼 , 𝑦 𝑛 ∈ 𝑄, 𝑛 = 1, … , 𝑁

• Consider the problem of using 𝐷 to train the model distribution 𝑝(𝑦|𝑥, 𝜃) parameterized by 𝜃. 

Also with the hyperparameter 𝜖 > 0, we define

ΔKL 𝑟, 𝑥 𝑛 , 𝜃 ≡ KL 𝑝 𝑦 𝑥 𝑛 , 𝜃 ‖𝑝 𝑦 𝑥 𝑛 + 𝑟, 𝜃

𝑟𝑣−𝑎𝑑𝑣
(𝑛)

≡ argmax
𝑟

ΔKL 𝑟, 𝑥 𝑛 , 𝜃 ; 𝑟 2 ≤ 𝜖

• We refer to as 𝑟𝑣−𝑎𝑑𝑣
(𝑛)

the virtual adversarial perturbation. We define the local distributional 

smoothing (LDS) of the model distribution at 𝑥(𝑛) by 

LDS 𝑥(𝑛), 𝜃 ≡ −ΔKL 𝑟𝑣−𝑎𝑑𝑣
𝑛

, 𝑥 𝑛 , 𝜃

Note 𝑟𝑣−𝑎𝑑𝑣
(𝑛)

is the direction to which the model distribution 𝑝(𝑦|𝑥 𝑛 , 𝜃) is the most sensitive in the 

sense of KL divergence.
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Miyato, Takeru, et al. "Distributional smoothing with virtual 

adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Formalization of LDS

• The smaller the value of ΔKL 𝑟𝑣−𝑎𝑑𝑣
(𝑛)

, 𝑥(𝑛), 𝜃 , the smoother 𝑝(𝑦|𝑥(𝑛), 𝜃) the at 𝑥.

• Our goal is to improve the smoothness of the model in the neighborhood of all the observed inputs. 

Formulating this goal based on the LDS, we obtain the following objective function.

1

𝑁
 

𝑛=1

𝑁

− log 𝑝 𝑦 𝑛 , 𝑥(𝑛), 𝜃 + 𝜆
1

𝑁
 

𝑛=1

𝑁

LDS 𝑥(𝑛), 𝜃 .

We call the training based on the above equation the virtual adversarial training (VAT).

• If we define 𝑟𝑎𝑑𝑣
(𝑛)

≡ argmin𝑟 𝑝 𝑦(𝑛)|𝑥 𝑛 + 𝑟, 𝜃 , 𝑟 𝑝 ≤ 𝜖 and replace ΔKL 𝑟𝑣−𝑎𝑑𝑣
(𝑛)

, 𝑥(𝑛), 𝜃 with 

− log𝑝 𝑦 𝑛 |𝑥 𝑛 + 𝑟𝑎𝑑𝑣
𝑛

, 𝜃 , we obtain the objective function of the adversarial training (Goodfellow

et. al., 2015) 
 ℒ 𝜃, 𝑥, 𝑦 = 𝛼 ⋅ ℒ 𝜃, 𝑥, 𝑦 + 1 − 𝛼 ⋅ ℒ 𝜃, 𝑥 + 𝜖sign 𝛻𝑥ℒ 𝜃, 𝑥, 𝑦
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Miyato, Takeru, et al. "Distributional smoothing with virtual 

adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset

• Generating multiple points uniformly over two trajectories on ℛ2

• Linearly embedding them into 100 dimensional input vector space.

• 16 training samples, 1000 test samples

• Because the number of training samples is very small relative to 

the input dimension, maximum likelihood estimation (MLE) is 

vulnerable to over-fitting problem on these datasets.
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset
 LDS
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset

• NN without regularization (MLE) and NN with 𝐿2 regularization are drawing wrong decision boundary.

• The decision boundary drawn by dropout for ‘Circles’ is convincing, but that of for ‘Moons’ does not coincide with 

our intention.
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset

• The opposite can be said for the random perturbation training.

• The decision boundary drawn by dropout for ‘Circles’ is convincing, but that of for ‘Moons’ does not coincide with 

our intention.
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

1. Supervised learning for the binary classification of synthetic dataset

• VAT is drawing appropriate decision boundary by imposing local smoothness regularization around each data 

point. 

• This doe not mean, however, that the large value of LDS immediately implies good boundary. 

• By its very definition, LDS tends to disfavor abrupt change of the likelihood around training datapoint. 

• Larger value of LDS therefore forces large relative margin around the decision boundary. 
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

2. Supervised learning for the classification of the MNIST dataset
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adversarial training." arXiv preprint arXiv:1507.00677 (2015).

Experiments

3. Semi-supervised learning for the classification of the benchmark datasets

• Recall that our definition of LDS at any point 𝑥 is 

independent of the label information 𝑦. 

• This in particular means that we can apply the VAT to 

semi-supervised learning tasks.
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