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Preliminaries

« Supervised learning infers a function from labeled training data

p(01X,Y) « p(Y|X,0)p(8)

« Unsupervised learning infers a function without labeled training data
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Preliminaries

« Supervised learning infers a function from labeled training data
p(81X,Y) o p(Y|X, 0)p(6)

« Unsupervised learning infers a function without labeled training data
p(61X) o« p(X18)p(6)

« Generative methods try to model the class-conditional density p(x|y) by some unsupervised learning

procedure. A predictive density can then be inferred by Bayes’ theorem:

_ pxly)p(y)
p(ylx) =
Jy p&xIY)p()dy

Discriminative methods concentrate on estimating p(y|x).

ACE Team @ KAIST



Preliminaries

« Supervised learning infers a function from labeled training data
p(81X,Y) o p(Y|X, 0)p(6)

« Unsupervised learning infers a function without labeled training data
p(61X) o« p(X18)p(6)

« Semi-supervised learning infers a function with both labeled and unlabeled training data

ACE Team @ KAIST
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Supervised learning

Semi-supervised learning

https://en.wikipedia.org/wiki/Semi-supervised learning



https://en.wikipedia.org/wiki/Semi-supervised_learning

Preliminaries

Recommend to see http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecturel3.pdf

Taxonomy of Generative Models Direct
' GAN

Generative models

/\

‘ Explicit density ‘ ‘ Implicit density
Tractable density ‘ Approximate density Markov Chain
. . GSN
Fully Visible Belief Nets \
- NADE _ / .
- MADE ‘ Variational ‘ ‘ Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Goodfellow, lan. "NIPS 2016 tutorial: Generative adversarial
ACE Team @ KAIST networks." arXiv preprint arXiv:1701.00160 (2016). 7
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Generative Adversarial Network

Learning objective:
mGjn max V(D,G), V(D,G) = Exp,,, cx)ll0gD(x)] + E, ) [log(1 — D(G(2))]

X ~ pdata(x) V D(X)
Training set / Discriminator

h — {Fa ke

vy

z ~ p,(z) Random

Fake image

Generator
G(2)

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 2014. 9



Generative Adversarial Network

X
Pdata (X) D*(X) — pdata( )
) - Y Paata(x) + pg(x)
D(x) a. :.-,; Dg (X)) el \

oy
s B E
[ L
- L)

/Y NN

(a) (b) () (d)

Learning objective:
mGin max V(D,G), V(D,G) = Exp . c0llogD(x)] + Ezp () [log(1 — D(G(2))]

.
* . . .

o g

v For real images, D(x) tries to be near 1.

v’ For fake images, D tries to make D(G(z)) near 0 and G tries to make D(G(z)) near 1.

— so0-called mini-max two player game

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 201410



Generative Adversarial Network

: Pdata(X)
pdata(x) D (x) = ga§a+ ( )
:ﬁ.‘ :,,..,.- :,.,: Pdata\X pg X

N . .
" ™ [ ‘e

------

a1
oy

s B E

[ L

- "

/Y NN

(a) (b) (c) (d)
Pdata(X)
Pdata(X) tDpg ()’

V(G,D) = f Paata(x) log(D (x))dx + j p.(2)log (1-D(6(2)) dz

zZ

For G fixed, the optimal discriminator D is D*(x) = since,

= f Pdata(X) 10g(D(x)) + py(x) log(1 — D(x)) dx

Pdata(X)
pdata(x)+pg (%)

has its minimum in [0,1] at

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 2014.11



Generative Adversarial Network

Learning objective:
mGin max V(D,G), V(D,G) = Exep,,, 00108 D(x)] + E,p_[log(1 — D(G(2))]

The mini-max game in the above learning objective can now be reformulated as
C(G) = max V(G,D) = Ex.p,,,,llog D¢ (x)] + Exp, [log(1 — D (x))]

X
lo pdata( ) n [Ex~p [O

‘ ] pg(x)
¥~Pdata Pdata (x) + pg (x)

= [E g
Daata(x) + Pg (x)

Theorem) The global minimum of the virtual training criterion C(G) is achieved if and only if p,(x) = pgqeq(x). At

that point, C(G) achieves the value —log4.
Proof)

C(G) — KL(pdata”pdata + pg) + KL(pg”pdata + pg) + 10g4 - 1084
- KL(pdata”(pdata'I'pg)/z) + KL(pg”(pdata + pg)/z) - 1084
= ]S(pdata”pg) - 10g4
]S(pdata”pg) is always non-negative and is zero when p;,¢, = pgy. Therefore, C(G) has its minimum value —log 4

When pygrq = Pg-

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 201412



Generative Adversarial Network

Results

Visualization of samples from the model. Rightmost
column shows the nearest training example of the
neighboring sample, in order to demsonstrate that model
has not memorized the training set.

(...)

Unlike most other visualizations of deep generative
models, these images show actual samples from the
model distributions, not conditional means given samples
of hidden units. Moreover, these samples are
uncorrelated because the sampling process does not
depend on Markov chain mixing.

AVARAYARARAVAVAYAV

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 201413



Generative Adversarial Network

* “In practice, adversarial nets represent a limited family of P, distributions via the function G(z; 64), and

we optimize 84 rather than P, itself, so the proofs do not apply.

— Implicit density model (recommend to see how VAE infers the posterior p(z|x) and to compare GAN and VAE)

« However, the excellent performance of multi-layer perceptrons in practice suggests that they are a reasonable

model to use despite their lack of theoretical guarantees.”

Recommend to see more detailed review of GAN
— https://www.slideshare.net/ckmarkohchang/generative-adversarial-networks

Goodfellow, lan, et al. "Generative adversarial nets."
ACE Team @ KAIST Advances in neural information processing systems. 201414
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Adversarial Autoencoder

q(z|x) : encoding distribution q(z) = fxexq(zlx)pd(x)dx pq(X) : data distribution
. aggregated posterior

q(z|x)
X z ~ q(z)
/ |~ / p(x|z) : decoding distribution
Encoder & Generator Decoder
Draw samples | Adversarial cost
from p(z) | 4+ : for distinguishing
nput positive samples p(z)

from negative samples ¢(z)

© \

Given prior Discriminator
p(z) : prior distribution

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 16



Adversarial Autoencoder

Learning objective:
* Inthe reconstruction phase, the autoencoder updates the encoder and the decoder to minimize the

reconstruction error of inputs.

1 12
Lieconst = D, |x — X|
ata

q(z|x)

X z~ qlz)

/ -~/

Encoder Decoder

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 17



Adversarial Autoencoder

Learning objective:

* Inthe regularization phase, the adversarial network first updates its discriminative network to tell
apart the true samples (generated using the prior) from the generated samples (the hidden
codes computed by the autoencoder). The adversarial network then updates its generator (which
Is also the encoder of the autoencoder) to confuse the discriminative network.

mGjn max V(D,G), vV (D,

Generator

/

Given prior

q(z|x)

X
/—n--—:-

Draw samples

from p(z) |

<

p(z) : prior distribution

ACE Team @ KAIST

G) — IIE':x~pdata(x) [lOgD(X)] + IE':z~pz(z) [log(l o D(G (Z))]

z~qlz)

Adversarial cost

for distinguishing
—{luput—=> P1 =

positive samples p(z)
from negative samples ¢(z
{

\ Discriminator

Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 18



Adversarial Autoencoder

Learning objective:
1) Inthe reconstruction phase, the autoencoder updates the encoder and the decoder to minimize the

reconstruction error of inputs.
Lyeconst = [Epd(x) lIEq(z|x) [— logp(x|z)]]

2) Inthe regularization phase, the adversarial network first updates its discriminative network to tell
apart the true samples (generated using the prior) from the generated samples (the hidden
codes computed by the autoencoder). The adversarial network then updates its generator (which
Is also the encoder of the autoencoder) to confuse the discriminative network.

mGin max V(D,G), V(D,G) = Ex—p, . c0llog DX)] + E;p 5 [log(1 — D(G(2))]

— The adversarial network guides the posterior distribution q(z) to match the prior distribution p(z)

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 19



Adversarial Autoencoder

Comparison to variational autoencoder (Kingma et. al., 2014):

* . :
Learning objective of VAE: ELBO : Evidence Lower BOund

L = IEpd(X) []Eq(z|x) [_ log p(XlZ)] ] + [Epd(x) [KL(CI(le)”p(Z))]

\ )
Y 1

Lreconst KL-reguIarization

N

This term is replaced by adversarial loss in AAE

Pros and Cons of using AAE instead of VAE https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf
Pros)

« Do not need to set the functional form of the prior distribution and reparameterization trick

« We just need to be able to sample from the prior to induce the latent distribution to match the prior

Cons)
« Challenging to train due to common difficulties inherent in GANs

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 20


https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf

Adversarial Autoencoder

Comparison to variational autoencoder (Kingma et. al., 2014):

The hidden code z of the hold-out images for an AAE/VAE fit to a 2D Gaussian

Adversarial Autoencoder Variational Autoencoder
C Gaps in the latent space; not well-packed
10) 2
..:'S,;,
‘)l" v~. : "r :
: 10 Em0 O35
@ ; . B G
}*: Se B2 37
7, " ¥ [ T —
-10 0 10 -10 0 10 [ 1 o

https://duvenaud.qgithub.io/learn-discrete/slides/AdversarialAutoencoders.pdf

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 21


https://duvenaud.github.io/learn-discrete/slides/AdversarialAutoencoders.pdf

Adversarial Autoencoder

Comparison to variational autoencoder (Kingma et. al., 2014):

The hidden code z of the hold-out images for an AAE/VAE fit to a mixture of 10 2D Gaussian

Adversarial Autoencoder Variational Autoencoder

B . D VAE emphasizes the mode of distribution;
' has systematic differences from the prior

10 10

B0 35
Bl B
Bl 37

s I —
~10 0 10 a4 o

https://duvenaud.qithub.io/learn-discrete/slides/AdversarialAutoencoders.pdf
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ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 22
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Adversarial Autoencoder

Incorporating Label Information in the Adversarial Regularization

“In the scenarios where data is labeled, we can incorporate the label information in the adversarial training
stage to better shape the distribution of the hidden code. In this section, we describe how to leverage partial
or complete label information to regularize the latent representation of the autoencoder more heavily.”

/_.. .

Draw samples —{Input =

from PlLz)

>

/ _-—

-/

_.®

« Add one-hot vector to associate the label with a mode of the distribution.
« The one-hot vector acts as switch that selects the corresponding decision boundary of the discriminative

network given the class label.

« This one-hot vector has an extra class for unlabeled examples. — semi-supervised approach
ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 23



Adversarial Autoencoder

Incorporating Label Information in the Adversarial Regularization

“In the scenarios where data is labeled, we can incorporate the label information in the adversarial training

stage to better shape the distribution of the hidden code. In this section, we describe how to leverage partial
or complete label information to regularize the latent representation of the autoencoder more heavily.”
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Adversarial Autoencoder

Supervised Adversarial Autoencoders
One-hot vector of the label class

a(zlx)

X

/-1 U RE 7

ﬁi

+——_ Image style information

~@

Draw samples
from N(z|0.1I) +

a —={Input >~

Disentangling the label information from the hidden code by providing the one-hot vector to the generative
model. The hidden code in this case learns to represent the style of the image.

-II— Style

|

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 25



Adversarial Autoencoder

Supervised Adversarial Autoencoders

» Varying label class

AN R PR VB RS X AN W
Wi~y L
TIPS T =TT

QOO0 INVN=0NO

a|A1s abewi Bulhiep

(b) SVHN

(a) MNIST

Figure 7: Disentangling content and style (15-D Gaussian) on MNIST and SVHN datasets.

Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 26
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Adversarial Autoencoder

Semi-supervised Adversarial Autoencoders

Imposes a discrete (categorical)
distribution on the latent class variable

0,1]

y ~ Cat(y)

-

T

D 01
Imposes a continuous (Gaussian)

distribution on the latent style variable

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 27



Adversarial Autoencoder

Semi-supervised Adversarial Autoencoders

Both of the adversarial networks as well as the autoencoder are

trained jointly with SGD in three phases — Draw samples
from Cat(y) +
1. In the reconstruction phase, the autoencoder updates the IIIII E=ing N g _’@
encoder q(y, z|x) and the decoder to minimize the reconstruction
error of the inputs on an unlabeled mini-batch. q(y, z|x) B -
xX *
2. Inthe regularization phase, each of the adversarial networks softmax 2|
first updates their discriminative network to tell apart the true / =1 y_ > /
samples from the generated samples (the hidden codes linear [2]
computed by the autoencoder). ] L Z|a ] L
The adversarial networks then update their generator to confuse :l' M1 M
their discriminative networks. {-:ff.f_ff::lf;,hﬂ .
—>{lnput—=>| P~ —*@
3. Inthe semi-supervised classification phase, the autoencoder 6
updates g(y|x) to minimize the cross-entropy cost on a labled L
mini-batch.

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 28



Adversarial Autoencoder

Semi-supervised Adversarial Autoencoders

MNIST (100) | MNIST (1000) | MNIST (All) SVHN (1000)
NN Baseline 25.80 8.73 1.25 47.50
VAE (M1) + TSVM 11.82 (£0.25) | 4.24 (£0.07) . 55.33 (£0.11)
VAE (M2) 11.97 (£1.71) | 3.60 (£0.56) : .
VAE (M1 + M2) 3.33 (£0.14) | 2.40 (+0.02) 0.96 36.02 (+0.10)
VAT 2.33 1.36 0.64 (£0.04) 24.63
CatGAN 1.91 (£0.1) | 1.73 (£0.18) 0.91 ;
Ladder Networks 1.06 (£0.37) | 0.84 (£0.08) | 0.57 (£0.02) -
ADGM 0.96 (£0.02) - - 16.61 (£0.24)
Adversarial Autoencoders || 1.90 (£0.10) | 1.60 (£0.08) | 0.85 (£0.02) || 17.70 (£0.30)

Table Z: Semi-supervised classification performance (error-rate) on MNIST and SVHN.

ACE Team @ KAIST Makhzani, Alireza, et al. "Adversarial autoencoders." arXiv preprint arXiv:1511.05644 (2015). 29
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Adversarially Regularized Autoencoder

Learning latent variable models of discrete structures, such as text sequences or discretized images,
remains a challenging problem
— Generative models based on VAEs or GANs can easily degenerate into a unconditional language model.

— Policy gradient methods or re-parameterization trick(e.g. Gumbel-Softmax distribution) are used to overcome.

The authors extend the AAE to discrete sequences/structures.

— Similar to the AAE, our model learns an encoder from an input space to an adversarially regularized
continuous latent space.

— However, unlike the AAE which utilizes a fixed prior, the authors instead learn a parameterized prior as a
GAN.

— Like sequence VAEs, the model does not require using policy gradients or continuous relaxations.

the model provides flexibility in learning a prior through a parameterized generator.

Kim, Yoon, et al. "Adversarially regularized autoencoders for generating
ACE Team @ KAIST discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 31



Adversarially Regularized Autoencoder

Learning objective:

min = Lec(P, 1) + )\(I)W(PQ, P,)

(f)r:i'r.-’ enc, | . B
. . . X A 7z * X Ert‘("l'
reconst. loss of AE  @dversarial regularization to '
make two distributions similar i _ S 5, _—

Dmin  Lee(d, ) = Exwr, [~ log py (x| ence(x))]

2)max  Lai(w) = Ex~p, [fulencs(x))] — Eavr, [fu(2)]

3) ":g" Lene(¢) = Ex~p, [fuw(ency(x))] — Ezwp, [fu(Z)]

W(Py,P,) :

discrete (P,)  encoder  code (Pg) decoder model (Py) reconst.

noise (N,...) generator prior (P,) critic reg.

Figure 1: ARAE architecture. A discrete sequence x is encoded
and decoded to produce X. A noise sample s is passed though a
generator gg (possibly the identity) to produce a prior. The critic
function f,, is only used at training to enforce regularization W'.

Wasserstein distance between two distributions P, and IP,.  The model produce discrete samples x from noise s. Section 5

* Mathematics in WGAN paper:

relates these samples x ~ Py, to x ~ [Py

https://www.slideshare.net/ssuser7el0e4d/wasserstein-gan-i

ACE Team @ KAIST

Kim, Yoon, et al. "Adversarially regularized autoencoders for generating
discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 32
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Adversarially Regularized Autoencoder

Extension: Unaligned Transfer

Learning objective: ﬂ)ﬂ] Liec(¢,1) + A(l)W(EDQa z) — AL ’Cclaas(@: )

To learn to remove attribute
distinctions from the prior

Lass(@, 1) @ the loss of a classifier p, (y|z) from latent variable to labels

This requires two more update steps:
1. Training the classifier

1
L = —a logp (y(l)lz(l))
2. Adversarially training the encoder to this classifier.
1
L=—— logp (1 y(‘)|z(‘))

m

Kim, Yoon, et al. "Adversarially regularized autoencoders for generating
ACE Team @ KAIST discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 33



Adversarially Regularized Autoencoder

Extension: Unaligned Transfer

Positive great indoor mall .

= ARAE no smoking mall .

= Cross-AE terrible outdoor urine .

Positive it has a great atmosphere , with wonderf{ul service .
= ARAE it has no taste , with a complete jerk .

=> Cross-AE it has a great horrible food and run out service .

Positive we came on the recommendation of a bell boy and the food was amazing .

= ARAE we came on the recommendation and the food was a joke .
=> Cross-AE we went on the car of the time and the chicken was awful .

Negative hell no !

= ARAE hell great !

=> Cross-AE incredible pork !

Negative small , smokey , dark and rude management .
=> ARAE small , intimate , and cozy friendly staff .

=> Cross-AE great , , , chips and wine .

Negative the people who ordered off the menu did n’t seem to do much better .
= ARAE the people who work there are super friendly and the menu is good .
=> Cross-AE the place , one of the office is always worth you do a business .

« Sentiment transfer
Top) Positive — Negative
Bottom) Negative — Positive

ACE Team @ KAIST

Science what is an event horizon with regards to black holes ?

= Music what 1s your favorite sitcom with adam sandler ?

=> Politics what is an event with black people ?

Science take 1ml of hel ( concentrated ) and dilute 1t to 50ml .

= Music take em Lo you and shoul it to me

= Pohiucs take bribes to 1slam and it will be pumshed .

Science just multiply the numerator of one fraction by that of the other .

= Music just multiply the fraction of the other one that &apos;s just like it .

= Politics just multiply the same fraction of other countries .

Music do you know a website that you can find people who want to join bands ?

=+ Science do you know a website that can help me with science ?

= Politics do you think that you can find a person who is in prison ?

Music all three are fabulous artists , with just incredible talent ! !

= Science all three are genetically bonded with water , but just as many substances ,
are capable of producing a special case .

=> Politics all three are competing with the government , just as far as i can .

Music but there are so many more i can &apos;t think of !

=> Science but there are so many more of the number of questions .

=> Politics but there are so many more of the can i think of today .

« Topic transfer
Kim, Yoon, et al. "Adversarially regularized autoencoders for generating

discrete structures. arXiv preprint." arXiv preprint arXiv:1706.04223 2 (2017). 34
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Explaining and Harnessing adversarial examples

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

\

Szegedy et al.|(2014b) demonstrated a variety of intriguing properties of neural networks and related
models. Those most relevant to this paper include:

e Box-constrained L-BFGS can reliably find adversarial examples.

e On some datasets, such as ImageNet (Deng et al.| 2009), the adversarial examples were so
close to the original examples that the differences were indistinguishable to the human eye.

e The same adversarial example is often misclassified by a variety of classifiers with different
architectures or trained on different subsets of the training data.

e Shallow softmax regression models are also vulnerable to adversarial examples.

e Training on adversarial examples can regularize the model—however, this was not practical
at the time due to the need for expensive constrained optimization in the inner loop.

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and
ACE Team @ KAIST harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.36



Explaining and Harnessing adversarial examples

Fast adversarial examples

* In many problems, the precision of an individual input feature is limited. For example, digital images often
use only 8 bits per pixel so they discard all information below 1/256(=1/28) of the dynamic range.

« Because the precision of the features is limited, it is not rational for the classifier to respond differently to an
input x than to an adversarial input X = x + n if every element of the perturbation n is smaller than the
precision of the features.

« Formally, for problems with well-separated classes, we expect the classifier to assign the same class to x
and X so long as ||nll. < €, where € is small enough to be discarded by the sensor or data storage

apparatus associated with our problem.
1Ml = max{|n;|}iz1, n

Goodfellow, lan J., Jonathon Shilens, and Christian Szegedy. "Explaining and
ACE Team @ KAIST harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572 .37



Explaining and Harnessing adversarial examples

Fast adversarial examples

» Consider the dot product between a weight vector w and an adversarial example x:
w'x% = w'x+ o'n.

« The adversarial perturbation causes the activation to grow by w’n. We can maximize this increase subject to
the max norm constraint on 5 by assigning n = sign(w). If @ has n dimensions and the average magnitude
of an element of the weight vector is m, then the activation will grow by emn.

« Since ||n||, does not grow with the dimensionality of the problem but the change in activation caused by
perturbation by n can grow linearly with n, then for high dimensional problems, we can make many
infinitesimal changes to the input that add up to one large change to the output.

« This explanation shows that a simple linear model can have adversarial examples if its input has sufficient
dimensionality. Previous explanations for adversarial examples invoked hypothesized properties of neural
networks, such as their supposed highly non-linear nature.

« Our hypothesis based on linearity is simpler, and can also explain why softmax regression is vulnerable to
adversarial examples.

Goodfellow, lan J., Jonathon Shilens, and Christian Szegedy. "Explaining and
ACE Team @ KAIST harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.38



Explaining and Harnessing adversarial examples

Fast adversarial examples Note that it is not random

+.007 x =
N x -+
esign(VgJ(0,x,y))
«oanda” “gibbon” 712 &l%0|
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al.l [2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GooglLeNet’s classification of the image. Here our € of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogleNet’s conversion to real numbers.

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and
ACE Team @ KAIST harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.39



Explaining and Harnessing adversarial examples

Fast adversarial examples

rom PIL import Image 25

rom torchvision import transforms
50

i

read the image, resize to 224 and convert to PyTorch Tensor 75

pig_img = Image.open{“pig.jpg")
preprocess = transftorms.Compose([

EL:

100

transforms.Resize(224), 125

transforms.ToTensor()},
* 150

pig tensor = preprocess(pig img)[MNone,:,:,:] 175

EL

plot image (note that numpy using HWC whereas Pytorch user CHW, so we need to convert) 200

plt.imshow{pig tensor[@].numpy().transpose(1,2,8))
0 50 100 150 200

ACE Team @ KAIST https://adversarial-ml-tutorial.org/introduction/ 40



https://adversarial-ml-tutorial.org/introduction/

Explaining and Harnessing adversarial examples

Fast adversarial examples

import torch
import torch.nn as nn
rom torchvision.models import resnet5se

¢ simple Module to normalize an image
class Normalize{nn.Module):
def  init (self, mean, std):
super{Normalize, =elf). init_ ()}
self.mean = torch.Tensor{mean)
self.std = torch.Tensor{std)
def forward(self, x):
return {x - self.mean.type as(x)[MNone,:,MNone,None]) f/ self.std.type as(x)[Mone,:,MNone

# values are standard normalization for ImageNet images,
# from https://github.com/pytorch/examples/blob/master/imagenet/main.py
norm = MNormalize{mean=[@.485, @.456, ©.486], std=[©.229, ©.224, 8.225])

—=

Load pre-trained ResNet58, and put into evaluation mode (necessary to e.g. turn off batchnc

.

model = resnetS@{pretrained=Trues)

model.eval(); import json
1 i ith open{"imagenet_class_index.json") as f:

imagenet classes = {int{i):x[1] for i,x in json.load(f).items()}
# form predictions . . . .
. : print{imagenet classes[pred.max{dim=1)[1].item{)])
pred = model({norm{pig_ tensor))

hog

ACE Team @ KAIST https://adversarial-ml-tutorial.org/introduction/ 41
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Explaining and Harnessing adversarial examples

Fast adversarial examples

import torch.optim as optim
epsilon = 2./255

delta = torch.zeros like(pig tensor, requires grad=True)
opt = optim.SGD{[delta], lr=1le-1)

for t in range(38):

pred = model({norm{pig tensor + delta))
loss = -nn.CrossEntropyloss(){pred, torch.lLongTensor{[341]))
if t %5 ==

print(t, loss.item())

opt.zero_grad()

loss.backward()

opt.step()

delta.data.clamp (-epsilon, epsilon)

print("True class probability:", nn.Softmax{dim=1){pred)[&,341].item{)})

@ -8.86385814544677734375 max class = pred.max(dim=1)[1].item()
5 -8.88693511962898625

18 -6.6815821456969179688
15 -8.83636681365966797
28 -12.2296725708006781

print("Predicted class: ", imagenet classes[max_class])
print{"Predicted probability:", nn.Softmax{dim=1){pred)[@,max_class].item{))

Predicted class: wombat

25 -14.380384521484375 Predicted probability: ©.09979669251682234
True class probability: 1.4827455188589493e-86
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Explaining and Harnessing adversarial examples

Fast adversarial examples

Iplt-imshOW((pig_tensor + delta)[@].detach().numpy().transpose(1,2,0)) Iplt.imshow((Se‘delta+e.5)[6].detach().numpy().transpose(l,z,e))

0 0

25 25

50 50

75 75 ¥4

100 100 L8

125 125

150 150 A&

175 175

200 200

0 50 100 150 200
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FaSt adversarlal examples delta = torch.zeros_like(pig tensor, requires_grad=True)

opt = optim.SGD{[delta], lr=5e-3)

Targeted attacks: for t in range(100):
maklng NNS to pl’edICt plg as alrllner pred = model{norm{pig_tensor + delta))

loss = (-nn.CrossEntropyloss()(pred, torch.LongTensor{[341])) +
nn.CrossEntropylLoss{)(pred, torch.LongTensor{[484])))

argmax (L(hg (x+96),y) — L(hg (x + 6),ytarget)) iFt %10 —-

S6€Delta print{t, loss.item())
opt.zero_grad()
Iplt.imshow((pig_tensor + delta)[e].detach().numpy().transpose(1,2,8)) loss.backward()

opt.step()

0 delta.data.clamp_(-epsilon, epsilon)

25 B 24.88684820251465

18 -8.1628284454345783
26 -8.826773452758789
38 -15.677117347717285
468 -28.68378635986328
58 -24.99606704711914
66 -31.609849548339844
78 -34.88946358697656
88 -37.928686419921875
98 -468.32395553588867

50
75
100
125
150

175

max_class = pred.max{dim=1)[1].item()
print("Predicted class: ", imagenet_classes[max_class])

200 print("Predicted probability:", nn.Softmax(dim=1)(pred)[@,max_class].item())

0 50 100 150 200 Predicted class: airliner
Predicted probability: ©.9679961284528889

ACE Team @ KAIST https://adversarial-ml-tutorial.org/introduction/ 44



https://adversarial-ml-tutorial.org/introduction/

Explaining and Harnessing adversarial examples

FaSt adversarlal examples delta = torch.zeros_like(pig tensor, requires_grad=True)

opt = optim.SGD{[delta], lr=5e-3)

Targeted attacks: .
making NNs to predict pig as airliner pred

loss

model {norm{pig_tensor + delta))

{-nn.CrossEntropylLoss()(pred, torch.LongTensor{[341])) +
nn.CrossEntropylLoss{)(pred, torch.LongTensor{[484])))

argmax (L(hg (x+98),y) — L(he (x + 6),ytarget)) iFt %10 —-

S€eDelta print{t, loss.item())

'plt .imshow( (5@*delta+8.5)[@].detach().numpy().transpose(1,2,8)) Eptezenasaiadi

loss.backward()
S S = I . opt.step()

+ delta.data.clamp_(-epsilon, epsilon)
25
B 24.88684820251465
18 -8.1628284454345783
26 -8.826773452758789
38 -15.677117347717285
468 -28.68378635986328
58 -24.99606784711914
66 -31.0609849548339844
78 -34.88946358697656
88 -37.928686419921875
98 -468.32395553588867

50
75
100
125

150

max_class = pred.max{dim=1)[1].item()

print("Predicted class:
print("Predicted probability:", nn.Softmax(dim=1)(pred)[@,max_class].item())

» imagenet_classes[max_class])

Predicted class: airliner
Predicted probability: ©.9679961284528889
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Explaining and Harnessing adversarial examples

Training with an adversarial objective function based on the fast gradient sign method
was an effective regularizer:

LO,x,y)=a-LO,x,y)+(1—a)-L (H,x + Esign(VxL(H,x, y)))

Typical objective (e.g. NLL) Adversarial example as a regularizer

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and
harnessing adversarial examples (2014)." arXiv preprint arXiv:1412.6572.

Training adversarially robust classifiers

argmax L(hg(x + 6),y)

~ . 1
L(8) = argmin R, 4,,(hg, Dtrgin) = argmin
6 SEA(x)

0 |Dtrain |
(x,¥)ED¢train

1. For each (x,y) € Dirqin, SOIVe the inner maximization problem:

5*(x) = argmax L(hg(x + 8),y)
6EA(x)

2. Compute the gradient of the empirical adversarial risk, and update 6

Z Vo L(hg(x + 57 (x)),y)

(x,Y)ED¢train

— Mini-max or robust optimization formulation of adversarial learning
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DISTRIBUTIONAL SMOOTHING
WITH VIRTUAL ADVERSARIAL TRAINING
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“We propose local distributional smoothness (LDS), a new notion of smoothness for statistical
model that can be used as a regularization term to promote the smoothness of the model
distribution. We named the LDS based regularization as virtual adversarial training (VAT).”

Miyato, Takeru, et al. "Distributional smoothing with virtual

ACE Team @ KAIST adversarial training." arXiv preprint arXiv:1507.00677 (2015). 48



Virtual Adversarial Training

Local Distributional Smoothness (LDS)
. the negative of the sensitivity of the model distribution p(y|x, 8) with respect to the perturbation of x,
measured in the sense of KL divergence

LDS = KL(p(y|x, O)[lp(yIx +1,6))
perburtation to x

Relation to adversarial training (Goodfellow et. al., 2015)
. Goodfellow et. al. penalized the model’s sensitivity with respect to the perturbation in the adversarial
direction.

LO,x,y)=a-LO,x,y)+(1—a) L (H,x + esign(,L(0, x, y)))
| ) | ]

. . Y
Typical objective (e.g. NLL) Adversarial regularizer

On the other hand, using the language of adversarial training, LDS at each point is measuring the
robustness of the model against the perturbation in ‘virtual’ adversarial direction. We therefore refer to
our regularization method as virtual adversarial training (VAT).

Because LDS does not require the label information, VAT is also applicable to semi-supervised learning.

Miyato, Takeru, et al. "Distributional smoothing with virtual
ACE Team @ KAIST adversarial training." arXiv preprint arXiv:1507.00677 (2015). 49



Virtual Adversarial Training

Formalization of LDS
« Suppose the input space R! and output space @, and a training samples

D ={(x™,y™) | x™W eRl,y™ e Q,n=1,..,N}

« Consider the problem of using D to train the model distribution p(y|x, 8) parameterized by 6.
Also with the hyperparameter € > 0, we define

AKL(r,x(”),H) = KL (p(y|x("),8)||p(y|x(") + r,H))

rv(ledv = argT{IlaX{AKL(r,x(”),H); Iril, < e}

()

 Werefertoasr,_; ,, the virtual adversarial perturbation. We define the local distributional

smoothing (LDS) of the model distribution at x(™ by
LDS(x™, 0) = —Ag, (1% x™,6)

—adv’
Note rf_lzldv is the direction to which the model distribution p(y|x(™, 8) is the most sensitive in the

sense of KL divergence.

Miyato, Takeru, et al. "Distributional smoothing with virtual
ACE Team @ KAIST adversarial training." arXiv preprint arXiv:1507.00677 (2015). 50



Virtual Adversarial Training

Formalization of LDS
« The smaller the value of Ak, (r(”) xM™), 9), the smoother p(y|x™, 6) the at x.

v—adv’

* Our goal is to improve the smoothness of the model in the neighborhood of all the observed inputs.
Formulating this goal based on the LDS, we obtain the following objective function.

N N
1 1
N z — logp(y(”),x("), 0) + AN Z LDS(x("), 9) :
n=1 n=1
We call the training based on the above equation the virtual adversarial training (VAT).

S argminr{p(y(")lx(") +1,0), Irll, < e} and replace Ak, (r(n) xM), 6) with

« Ifwe definer,  dp

adv

— logp (y(”)|x(") + r;gg, 9), we obtain the objective function of the adversarial training (Goodfellow
| )

et. al., 2015) Y
LO,x,y)=a-LO,x,y)+(1—a) L (H,x + Esign(VxL(H,x, y)))

Miyato, Takeru, et al. "Distributional smoothing with virtual
ACE Team @ KAIST adversarial training." arXiv preprint arXiv:1507.00677 (2015). 51



Virtual Adversarial Training

Experiments
1. Supervised learning for the binary classification of synthetic dataset

2 . . 2
« Generating multiple points uniformly over two trajectories on R? A
4
» Linearly embedding them into 100 dimensional input vector space. ! 4 ° ! ¢
8! &
« 16 training samples, 1000 test samples 0 o’ : 0 L “t‘ o
. . . A ry o
« Because the number of training samples is very small relative to -1 ‘ é -1 o
®
the input dimension, maximum likelihood estimation (MLE) is  _, | | ) | |
=2 -1 0 1 2 =2 -1 0 1 2
vulnerable to over-fitting problem on these datasets. _
(a) Moons dataset (b) Circles dataset

Miyato, Takeru, et al. "Distributional smoothing with virtual
ACE Team @ KAIST adversarial training." arXiv preprint arXiv:1507.00677 (2015). 52



Experiments

Virtual Adversarial Training

1. Supervised learning for the binary classification of synthetic dataset

(a) Moons (b) Circles
. — I .11
?“‘Q“ 0.0d S gzo?l\ﬁh&. . E 0.0 X20
= _04 \ m15“'¥ _04 - = 1 IU].S
m oS “ + : m E -
o C10ts O_o.8 ;] =10n
© —0.8 A = g © W — -~ = 5. \w_
m % o) b ‘.:‘ m _1'2 # \""-,_z"-..-“-.-a-‘_...‘_ E -
| - - . L 1

> _1 . . = 0 et > — . ] = ollisa. :
<C 20 200 400 600 W 200 400 600 < 0 200 400 600 W 0 200 400 600

Update Update Update Update

-= MLE(train) — MLE(test) - =  VAT(train) — VAT(test)

ACE Team @ KAIST
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Virtual Adversarial Training

Experiments
1. Supervised learning for the binary classification of synthetic dataset

—0.552 ~0.534 | —0422 , Eo'gs
0.80
10.65
0.50
10.35
=0.20
-0.05
) _0.257 i -0.95
' e =t =N w0.80
- [ (72 10.65
e - P 10.35
o | Me=eg= jo.zo
= — ' ' ' : : : : ‘ s ' . 0.05
(a) MLE (b) L2 regularization (c) Dropout (d) Random (e) Adversarial (f) VAT (ours)
perturbation training (L2)
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Virtual Adversarial Training

Experiments
1. Supervised learning for the binary classification of synthetic dataset

* NN without regularization (MLE) and NN with L, regularization are drawing wrong decision boundary.
» The decision boundary drawn by dropout for ‘Circles’ is convincing, but that of for ‘Moons’ does not coincide with

our intention.

~0.552 ~0.534 ~1.450
/] @ 9 f '/
J (2))° &7
: ° ‘1/

(a) MLE (b) L2 regularization (c) Dropout (a) MLE (b) L2 regularization (c) Dropout
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Experiments

Virtual Adversarial Training

1. Supervised learning for the binary classification of synthetic dataset

The opposite can be said for the random perturbation training.

The decision boundary drawn by dropout for ‘Circles’ is convincing, but that of for ‘Moons’ does not coincide with

our intention.

) 0
[ ] o
(] | ®
(d) Raridom‘ (e) Advérsarial (f) VAT (odrs)
perturbation training (L2)

=-0.95
=0.80
10.65
0.50
10.35
=0.20
0.05

_—0.805 ~0.199 ~0.257
® .
" € . e 4
. 9
. L
(d)‘ Random | (ej AdvérsariAaI (f) VAT (ou‘rs)
perturbation training (L2)

Miyato, Takeru, et al. "Distributional smoothing with virtual
adversarial training." arXiv preprint arXiv:1507.00677 (2015). 56

-0.95
0.80

| Ho.65

0.50
10.35
=0.20
0.05




Virtual Adversarial Training

Experiments
1. Supervised learning for the binary classification of synthetic dataset

« VAT is drawing appropriate decision boundary by imposing local smoothness regularization around each data
point.

« This doe not mean, however, that the large value of LDS immediately implies good boundary.

« By its very definition, LDS tends to disfavor abrupt change of the likelihood around training datapoint.

« Larger value of LDS therefore forces large relative margin around the decision boundary.

<N M ' B —~ 10— :
B"‘]z B‘?. 8 :
=" Tnn 5@ e
. [ — L
w i Hl: oo MM MN - MO0
T A A TR - |l
= [ D..:_q._"--' ROR LR = [ Q. B R R
~ 0 > 2 ~ o N0 > 2 ™
833 o “83% 4
< < < <
> >
(a) Moons (b) Circles
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Experiments

Virtual Adversarial Training

2. Supervised learning for the classification of the MNIST dataset

ACE Team @ KAIST

Method Test error (%)
SVM (gaussian kernel) 1.40
Gaussian dropout (Srivastava et al., 2014 0.95
Maxout Networks (Goodfellow et al.;2013) 0.94
*MTC (Rifai et al.|[2011) 0.81
*DBM (Srivastava et al.|[2014) 0.79
Adversarial training (Goodfellow et al.}[2015) 0.782
*Ladder network (Rasmus et al.;2015) 0.57+0.02
Plain NN (MLE) 1.11
Random perturbation training 0.843
Adversarial training (with L., norm constraint) (0.788
Adversarial training (with L9 norm constraint) 0.708
VAT (ours) 0.63740.046

Miyato, Takeru, et al. "Distributional smoothing with virtual
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Experiments
3. Semi-supervised learning for the classification of the benchmark datasets

(a) MNIST (b) SVHN

Test error(%) Test error(%)

Method N, 100 600 1000 3000 Method N, 1000
SVM i|Weston et al.”20]2b 2344 885 7.77 4.21 TSVM (Kingma et al.[[2014) 66.55
TSVM (eston et ol 2018 o8l olo 38 3 “DG,MI+TSVM (Kingma et al.| 2014) 55.33
EmbedMN (Weston ¢t al. 2012) 9397 5733 *DG,M1+M2 (Kingma et al.] 2014) 36.02
(Rifai et al.||2011) 120 5.13 3.64 257 SYM (G T l 6378
PEA (Bachman et al.|[2014) 10.79 244 223 1091 M (Gaussian kernel) -
“PEA (Bachman et al.| 2014) 521 287 264 230 Plain NN (MLE) 43.21
*DG (Kingma et al.[[2014) 333 259 240 218 VAT (ours) 24.63
*Ladder network (Rasmus et al., 2015) 1.06 0.84
Plain NN (MLE) 2198 9.16 7.25 432 (c) NORB Test error(%)
VAT (ours) 233 139 136 125 ! 0
Method N; 1000
. - : : TSVM (Kingma et al.[2014) 26.00
Recall that our definition of LDS at any point x is *DG.MI+TSVM (Kingma et al.| 2014) 1879
independent of the label information y. SVM (Gaussian kernel) 23.62
P Y Plain NN (MLE) 20.00
« This in particular means that we can apply the VAT to VAT (ours) 9.88

semi-supervised learning tasks.

Miyato, Takeru, et al. "Distributional smoothing with virtual
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